Paul Jones
Nigel Peters
- Michael Noels

Getting started in
Sound and Graphics

Paul Jones
Nigel Peters
Michael Noels

DATABASE PUBLICATIONS

First published 1985 by:

Database Publications Ltd.
68 Chester Road

Hazel Grove

Stockport SK7 5SNY.

© Database Publications Ltd.

ISBN number 0.948104 00 7

All rights reserved. No part of this publication

may be reproduced, stored in a retrieval system or
transmitted, in any form, or by any means,
electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the
publishers.

Dedicated to the memory of
JOHN GREEN - the first
man to put our ideas into print.

O 001NN H WK —

CONTENTS

First Steps

Text and Graphics Screens
Areas of Colour

Looking into Windows

Getting Coordinated

Going Round in Circles
Building Your Own Characters
Combining Colours Logically
Using Exclusive OR and Invert
Rubber Banding Revealed
Teletext Tales

Teletext Tales Revisited
SOUND-Basic Principles
Matters of Note

Channels, Queues and Basic
All Together Now

Not the Sound of Music
Addressing the Envelope
Envelopes Licked

14
23
33
40
45
52
63
71
77
86
94
102
106
111
117
121
126
134

Chapter 1: First Steps

THE BBC Micro has eight different modes, Mode 0 to 7. The mode you are in
effectively decides how many characters you can display on the screen and in
how many colours. Now when a micro is designed memory has to be
allocated carefully. The more characters you have per line (cpl) the more
memory it takes. Similarly, the more colours you use, the more memory it
takes to remember them.

Because of the limited amount of memory available, a compromise has
often to be made between the number of characters per line and the number of
colours available to the display — and, as often happens with a compromise,
you get the worst of both worlds.

In this, as in so many areas, the BBC Micro offers options that the others
do not. By choosing between the various modes you can trade off the number
of colours available against the number of characters displayed and so,
hopefully, obtain the optimum for a particular need. Figure I displays the
characteristics of the various modes.

Before going further let’s “dispose™ of Mode 7, the teletext mode, which is
the one the computer is in when first switched on. This mode is organised in a
totally different way to the others, so, for the major part of this book, it is “out

Graphics No Smallest
resolution Text Memory | plotable point| Character
MODE rs or pixel (gu) size (gu)

gp|3220k] ¥ | B
403220k W | B@=
203220k WM | 2]
80|25 |16k BN -
40(32[10k| W =
160(256] 4 |20(32 10k Wl | =]
text only 4ﬂ 25 8k

text only 16 40 25 1k

Figure I: Modes available on the BBC Micro

640256
3201 256
1602561

text only

320|256

#Né‘a_

N(BININ o

NP WN -

of context”.

We will however be devoting chapters eleven and twelve to Mode 7. It is
very valuable, as an examination of Figure I discloses. It can display 40 cplin
16 colours and yet only uses 1k of memory.

The only other mode to display 16 colours is Mode 2, and that only has 20
cpl and uses a massive 20k. The drawback is that teletext is not a graphics
mode, i.e. you aren’t able to use BBC Basic’s advanced graphic commands.
This does not mean that you cannot use teletext to draw some effective
pictures — you can, as Ceefax and Oracle, which also use Mode 7 format,
demonstrate.

For the moment, though, we’ll look at modes 0 to 6. If we examine Figure I
we can see clearly the cost, in terms of memory, of increasing either the
number of colours or of characters. Mode 3 and Mode 6 are both text-only
modes, which, as in Mode 7, means that the graphic commands are not
available. Both support only two colours.

Notice that while Mode 6 supports only 40 cpl, Mode 3 supports 80 cpl.
This doubling of characters, however, necessitates an increase in memory
required by the screen from 8k to 16k. Similarly, if we look at the two four
colour modes (i.e. Mode 1 and Mode 5) we find that Mode 5, which has only
20 cpl, uses 10k, while Mode 1, which supports double the characters (40 cpl)
uses double the memory — 20k.

The two colour graphics modes, 0 and 4, show a similar pattern. This time,
though, because you have fewer colours, Mode 4 can display 40 cpl using 10k
of memory, while Mode 0 displays 80 cpl using 20k. From the Memory Used
column of Figure I it can be seen that Modes 0, 1 and 2 need 20k for their
display, while Mode 3 requires 16k, hence these modes cannot be used on the
standard model A, which has only 16k of RAM fitted. The remaining modes
(4, 5, 6, 7), which use less memory, are available on both models A and B.

From Figure I it can be seen that the modes fall into three categories of two,
four and sixteen colours. You must remember, however, that one of the
colours available is the background colour — for example, in a two colour
mode you do not have two colours to write on, say, a black background. If
you want a black background, that’s one of your two colours, leaving you
only one colour to write on it with.

Also to say that there are 16 colours available on the BBC Micro is slightly
misleading. There are, in fact, only eight separate colours — black, red, green,
yellow, blue, magenta, cyan and white. As an investigation of Figure II will
show, the other colours are made up of pairs of these colours, flashing
alternately.

Figure II also shows that, in the four colour modes (Mode 1 and Mode 5)
the colours available are black, red, yellow and white. This is only the
“default” situation on entering a mode. You can, if you choose, display any of
the 16 colours available, but you are restricted to displaying a maximum of
four of these colours on the screen at any one time.

Similarly, the two-colour modes have black and white as their colours on
entry, but you can select any two colours from a ‘“palette’ containing 16
colours. You could, say, write in white on a blue background.

Enough theory — let’s get some hands on experience. So switch on your
computer. At power -on, the machine is in Mode 7. To change mode you
simply type MODE followed by the relevant number, e.g. to enter Mode 5
type: MODE 5 [Return], where [Return] means “press the Return key”. The
first thing you’ll notice is that the screen clears leaving the prompt and the
flashing cursor at the top left-hand corner of the screen. You cannot change
mode without clearing the screen.

Try typing in a few letters at random to see the chunky set of letters Mode §
gives you — remember it has 20 cpl. Press Return, ignoring any error
messages, and enter: MODE 4 [Return]. Again, the screen should clear. Try
typing a few letters this time. Immediately it should become apparent that the
characters are of more normal proportions — Mode 4 is a 40 cpl mode. The
penalty for having 40 cpl is that Mode 4 is only a two colour mode, while
Mode 5 supports four colours. Both require 10k of memory.

The last of the modes available on an unexpanded model A is Mode 6. It
may seem odd to have this special text-only mode with only 25 lines of 40
characters when there already exists Mode 4 which supports 32 lines of 40
characters. Part of the answer is memory saving: Mode 6 only uses 8k
whereas Mode 4 requires 10k.

MODES 0, 3, 4, 6 MODE 2 (and actual colours)
Logical mumber Colour Logical number Colour
",:::,:d ::?M (on entering mode) ;::d :‘:3:‘ (on entering mode)
0 128 Black 0 128 Black
1 129 White 1 129 Red
2 130 Green
3 131 Yellow
4 132 Blue
MO_DES LB 5 133 Magenta
Legical tumber Colour 6 | 138 | Cyan
ground | ground (on entering mode) 7| 135 White
0 128 Black 8 136 Flashing black-white
1 129 Red 9 137 Flashing red-cyan
2 130 Yellow 10 138 Flashing green-magenta
3 131 White 1 139 Flashing yellow-blue
12 140 Flashing blue-yellow
13 141 Flashing magenta-green
14 142 Flashing cyan-red
N.B. The foreground logical colour numbers on L L Flashing whiterbick
entering mode 2 are also the actual numbers.

Figure Il

To see the rest try this in both modes — hold a key down so that the
automatic repeat functions until you have a couple of lines filled with
characters. You should be able to see that in Mode 6 the lines are separated
slightly, making for greater legibility. If you are fortunate enough to have the
extra memory you can experiment with the size of characters in the other
modes (0, 1, 2 and 3).

Mode 2 gives 20 cpl as did Mode 5, but offers you 16 colours instead of
four. Mode 1 offers you four colours, as did Mode 5, but with double the
number of characters per line. Mode 0 offers you only two colours, but with
32 lines of 80 characters — while Mode 3, a text-only mode, provides 25 lines
of 80 characters with better separation and using 4k less memory than Mode
0. (On many TV sets it will be rather hard to read the 80 character modes —
monitors function better.)

Let’s return to Mode 5 with MODE 5 [Return]. This is a four colour mode.
On entering such a mode the colours available are: 0 black: 1 red; 2 yellow: 3
white.

As you can see, each colour has a number associated with it — the logical
colour number. (1t must be stressed that the colour associated with a logical
colour number is not fixed — you can alter things so that logical colour
number 2 refers, say, to blue. We shall see how to do this later in the article.)

On entering any mode, if you type something, it will appear in white on a
black background. The colour the characters appear in is called the
foreground colour. In this instance, since we have just entered Mode 5, the
foreground is in logical colour number 3, while the background is in logical
colour number 0.

Enter, on a new line: COLOUR 1 [Return]. Now type some letters — the
characters will now appear in logical colour 1 which is red. The effect of
COLOUR followed by a number is to change the foreground logical colour
number to the number specified.

For example, COLOUR 2 [Return] will make subsequent typing appear in
logical colour 2 which is yellow, while COLOUR 3 [Return]| will restore the
foreground colour to white.

You can, if you wish, try COLOUR 0 [Return]. This changes the
foreground colour to black (logical colour 0). However, as the background is
also black, there is no contrast between the characters and their background —
hence you cannot see what you are writing! To return to normality you must
either type in a command to change the foreground colour very carefully
(since you cannot see what you are doing) or, more drastically, press Break,
which will return the screen to Mode 7.

Of course we can use black as our foreground colour provided we write on
a contrasting background. To change the background colour of the
characters we must again use COLOUR, but this time followed by the logical
colour number PLUS 128. This addition of 128 tells the computer that the
logical colour number combined with it refers to the background colour, e.g.

COLOUR 129 will cause subsequent characters to be printed out on a red
background since 129=128+1 and logical colour number 1 is, at the moment,
red.

Experiment with different fore and background combinations. Notice that
when you change the background colour, only the backgrounds of
subsequent characters are affected. Earlier characters retain their previous
background colours. If, however, you type CLS after a change of background
colour, the screen will be cleared to that background colour. So COLOUR
130:CLS [Return] will give you an empty yellow screen while COLOUR
2:COLOUR 129:CLS [Return] will give you a red screen on which text
appears in yellow.

1@ REM PROGRAM I

20 MODE 5

38 PRINT "MODE 35"

4@ COLOUR 1

5@ PRINT "THIS IS IN COLOUR 1™
68 COLOUR 2

78 PRINT "THIS IS IN COLOUR 2"
8@ COLOUR 3

9@ PRINT ""THIS IS IN COLOUR 3"

That is enough new information for the moment, let’s try a few programs to
consolidate our knowledge. Program I should help you familiarise yourself
with the text colours. Instead of simply running the program, try the
alterations and additions suggested.

1@ REM FROGRAM I1I

2@ MODE S

I@ C/Z=0

4@ REPEAT

5@ C%4=C%Z+1

60 ASTERISK$=ASTERISK#®+"»"
7@ COLOUR CZ MOD3 +1

8@ PRINT ASTERISK#

98 UNTIL C%=18

Programs II and III are quite pretty. If you are a beginner, see if you can
follow what is going on. If you are past the beginning stage, but not yet an
expert, try adapting the programs as suggested — you may find the problems
posed rather testing.

Program I prints out three of the colours available for text on entering
Mode 5. Actually there is another colour. Try adding:

100 COLOUR 0
110 PRINT “THIS IS IN COLOUR 0"

Can you explain, and recover from, the results of this? Also, try changing
the background colour with any of the following line 25s:
25 COLOUR 129:CLS
25 COLOUR 130:CLS
25 COLOUR 131:CLS

What happens if you omit CLS?

Program II prints out a triangle of asterisks, each line of which is in a
different colour. This is achieved by line 70. C% MOD 3 gives the remainder
when you divide C% by 3; these remainders can only be 0, 1 and 2 (you
cannot have remainders of 3 or over when you are dividing by 3). This means
that C% MOD 3 +1 will return the values 1, 2 and 3 since we are adding one to
the remainder. The COLOUR statement of line 70 then uses these numbers to
change the foreground colour.

As an exercise, see if you can alter the program so that it prints the colours
of the lines out randomly. Use RND(3) — see the User Guide for an
explanation of RND(). Far more advanced, can you print out the triangle so
that each asterisk within a line is randomly coloured? Finally, can you
produce a red triangle, inside a yellow triangle, inside a white triangle of
asterisks? These two problems require far more than a simple alteration of
Program II.

1@ REM PROGRAM 111

28 MODE S

3@ FOR I%Z= @ TO 19

4@ FOR J%= @ TO 3@

S50 COLOUR RND(3)+128

6@ PRINTTAB(IZ,J%Z)CHR* (32);
7@ NEXT J%

8@ NEXT I%

Program III prints out a nice tapestry, filling in each of the screen columns
in turn, top to bottom, left to right. As a test, can you alter it so that it fills in
each row in turn, left to right, top to bottom?

You might also like to try the following versions of line 40 — they’re quite
interesting. See if you can work out what is happening.

4@ COLOUR (I%+Jd%) MOD 3% +129
40 COLOUR (I%%J%) MOD 3 +129
40 COLOUR (I%-Jd7) MOD 3 +1720
40 COLOUR (2% 1%4+J%) MOD & +129
40 COLOUR (I%=J%) MOD 3 +129

So far in a four colour mode we have had available the colours black, red.
yellow and white. As we have seen, the computer doesn’t refer to them by

10

name but by the logical colour numbers 0, 1, 2 and 3. These numbers “label”
the colours and we can, if we wish, change the colours that the logical colour
numbers refer to. All we have to do is to use the VDU 19 command to tell the

NUMBERS ACTUAL COLOUR
0 black
1 red
2 green
3 yellow
4 blue
5 magenta
6 cyan
7 white
8 flashing black-white
9 flashing red-cyan
10 flashing green-magenta
11 flashing yellow-blue
12 flashing blue-yellow
13 flashing magenta-green
14 flashing cyan-red
15 flashing white-black

Figure 111

computer that we wish to assign a different colour to a particular logical
colour number.

This would be simplicity itself if the syntax were such that to assign blue to
logical colour number 1 we would use VDU 19,1,BLUE. Unfortunately the
computer refers to the colours available in its palette not by name but by
number — each colour in the palette has assigned to it a fixed number, called
the actual colour number (see Figure I1I). The colour number for blue is 4.

To tell the computer that henceforward logical colour number 1 is to be
interpreted as actual colour 4 (blue) we use VDU 19,1,4,0,0,0. Those trailing
zeros are necessary for future expansion of the graphics system, we are told.
Note the format: VDU 19, logical colour reassigned, actual colour assigned,
0,0,0

So, to assign actual colour 2 to logical colour 2 in Mode 5 we would use
VDU 19,2,2,0,0,0. (Before we reassign logical colour 2 in Mode 5 it is yellow
i.e. actual colour 3. The command above tells the computer to interpret logical
colour 2 as actual colour 2, i.e. green.)

Remember, logical colour numbers are variable in the sense that we can
change the colours they “label”. The number of logical colours available,
however, is fixed by the mode and it is these logical colours that are referred to
in such statements as COLOUR 1 or GCOLO0,3 (more of which anon).

Actual colour numbers are fixed. That is, actual colour number 2 always
refers to green. We use them in the VDU 19 command when assigning colours
to a logical colour number.

If you find the trailing zeros a nuisance you can use the form VDU
19, logical, actual;0; The example above then becomes VDU 19,2,2:0; Make

11

sure you do not omit the final semi-colon — it can cause disaster!

One point to note is that when you reassign a logical colour to a new actual
colour everything on the screen that is written in that logical colour (even if it
was written before the reassignment) will instantly appear in the new colour.
As we shall see, this will allow us to produce quite dramatic effects.

Program IV shows the effects of writing a message in logical colour 1 and
then using a loop to assign each of the actual colours in turn to logical colour
1.

1@ REM PROGRAM IV
20 MODE S
3@ COLOUR 1
4@ PRINTTAB(2,12)"THIS5 MESSAGE"
5@ PRINTTAB(2,14)"DISPLAYS ALL THE*
608 PRINTTAB(2,16)"ACTUAL COLOURS™
7@ PRINTTAB(2,18)"IT IS IN LOGICAL "
88 PRINTTAB(Z,20)"COLOUR ONE."
9@ REPEAT
10@ FOR I%Z= @ TO 15
118 vDU 19,1,1%4,0,0,0
120 FOR J%= 1 TO 9999:NEXT J%
13@ NEXT IZ%Z
148@ UNTIL FALSE

Program V is more complex. Lines 30-50 assign actual colour 0 (black) to
logical colours 1, 2 and 3. This ensures that anything that is written in any
logical colour cannot be distinguished from the black background. This is a
technique often used to blank out screen pictures that take a long and rather
untidy time to build up. Once built up invisibly they are instantly made visible
by reassigning the logical colours to the actual colours of the picture.

Lines 60-200 print out a rectangle of blanks (CHR$(32)) in logical colours
1, 2 and 3 in order around the perimeter of the rectangle.

Lines 220-280 then make the colours visible by use of the VDU 19
command. Each time round the loop the actual colours are reassigned to a
different logical colour number so that, for example, red appears in different
places. This is done cyclically so that the colours appear to rotate around the
rectangle.

Finally if you want to test your command of the VDU 19 command, try to
arrange it so that the four colours used in Mode 5 are green, cyan, magenta
and blue.

1@ REM PROGRAM V
2@ MODE S

3@ FOR I%= 1 TO 3

48 vDU 19,1%,0,0,0,0
S@ NEXT 1%

12

(=1"]

78

8a

0
100
11@
12@
138
142
150
160
178
180
198
20a
218
220
230
248
250
268
278
280

COLOUR 129
FRINTTAB{(&,14)CHR$(32)
PRINTTAB(12,14)CHR#(32)
PRINTTAB(6,20)CHR$ (32)
FRINTTAB(12,20) CHR#(32)
COLOUR 130
FRINTTAB(1@,14)CHR$(32)
PRINTTAB (&, 16)CHR# (32)
FRINTTAB(12,18)CHR$ (32)
FRINTTAB(8,20) CHR# (32)
COLOUR 131
PRINTTAB(6,18) CHR$ (32)
FRINTTAB(10@,20) CHR% (32)
PRINTTAB(12,16)CHR# (32)
PRINTTAB(8,14)CHR%(32)
C%Z=0

REPEAT

FOR I%= 1 TO 3

VDU 19,1%+128, (C4L+1%Z)MOD3+1,0,08 ,0

NEXT IZ%Z

FOR J%= 1 TO 200@:NEXT
Cxi= (CZL+1)MOD3+1

UNTIL FALSE

13

Chapter 2: Text and Graphics Screens

IN the last chapter we saw how we could use the COLOUR statement to
obtain text in different colours on the screen. We also used the TAB()
statement to good effect without describing exactly how it functions.

Now although we did not make it explicit all these operations took place on
the TEXT screen. To put it simply, if not totally accurately, you can use the
screen of your television either for writing, when we say we are using the text
screen, or for drawing pictures and suchlike, when we say we are using the
graphics screen.

The graphics screen has its own special set of commands entirely different
from those we learnt for the text screen. You can mix the text and graphics
screens — they can overlap or occupy entirely separate areas or “windows” of
the screen. In fact when you enter modes capable of supporting graphics, the
text and graphics screens initially coincide — you can print text or draw
graphics over.the entire area of the VDU. To avoid the schizophrenia that this
may induce, for the moment we shall consider the screens in isolation, and not
attempt to mix text and graphics.

Before describing the graphics screen, which takes up the bulk of this
article, let’s formalise our ideas about the text screen. In all eight modes of the
BBC Micro we can print characters to the screen. The maximum number of
characters on the screen at one time varies from mode to mode.

® Modes 6 and 7, text only modes, support 25 lines of 40
characters.

® Modes 1 and 4 support 32 lines of 40 characters.

@® Modes 2 and 5 support 32 lines of 20 characters.

® Mode 0 supports 32 lines of 80 characters.

® Mode 3, a text only mode, supports 25 lines of 80 characters.

We can consider each character to be occupying one cell of the screen,
different modes having different numbers of cells. Now the TAB (X,Y)
function uses a type of coordinate system to allow us to print in specific cells.
Figure I illustrates the coordinate system available in Mode 4.

Notice that the origin, — point (0,0) — is at the top left of the screen. Y
increases as it goes downwards. Also although there are 40 cells for
characters across each line, they are numbered 0 to 39. Similarly, down the
Y-axis, the range for the 32 lines is from 0 to 31.

Of course in the other modes the values for the X and Y ranges will differ,
since the number of character cells differ. The above two points still hold,
though.

14

g
i
i
i
1
:

v
|
I
|
I
I

v

1
31

Figure I: Text screen in Mode 4

Program I illustrates a simple use of the TAB() function by drawing a line
of asterisks diagonally across the screen. Try altering the mode in line 20 to
modes 4, 6 and 0 to see the effect on the output. Remember, the meaning of
the coordinates varies from mode to mode because of the differing number of

1@ REM PROGRAM I

2@ MODE S

3@ FOR position = @ TO 19

4@ FPRINT TAB(position,position)"®"
5@ NEXT position

cells available. You might also try altering the program so that the diagonal
runs from right to left.

Program II draws an ‘X’ of asterisks using two loops, one for each
diagonal. Can you adapt it so that only one loop is used? Also the ‘X’ is not

1@ REM PROGRAM II

20 MODE S5

Z@ FOR position = @ TO 19

4@ PRINTTAB(position,position)"»"

5@ NEXT position

6@ FOR position = @ TO 19

7@ PRINTTAB(19-position,position)”
*ll

8@ NEXT position

central — try to rectify this.

Program III uses nested loops to draw a diamond of asterisks on the screen.
See if you can follow the logic, then try adding the following versions of line
65. Can you visualise the effects accurately before you run them?

65 COLOUR (start+length) MOD 3+1
65 COLOUR (top + row) MOD 3 + 1
Incidentally, the VDU 30 on the last line simply returns the cursor to the

15

1@ REM FROGRAM III

2@ MODE 5

20 centre=%:top=7:bottom=25

4@ FOR row= 1 TO 9

S8 start=centre — rowt+l

6@ FOR length = @ TO 2% (row—1)

78 FRINTTAB(start+length,top+row)”
*Il

8@ FPRINTTAB(start+length,bottom-ro
w) II*II

2@ NEXT length

188 NEXTrow

ii®@ vDbU 3@

top left of the screen to stop it spoiling our pattern.

Program IV uses virtually the same technique to produce a rather striking
pattern. Here, instead of asterisks, spaces are used, so the colours which vary
are the background colours. We also use VDU 19 to reassign the background
colours. Line 90, which ensures that the choice of colours is symmetrical, is
far more complex than the lines we added to Program III.

1@ REM PROGRAM IV
2@ MODE 5
@ VDU 19,3,4,0,0,8:VDU 19,0,2,0,0

4@ COLOUR 128:CLS

5@ centre=%:top=7:bottom=25

6@ FOR row = 1 TO 9

78 start=centre- row+l

8@ FOR length = @ TO 2Z#(row—1)

7@ COLOUR(ABS(start+length—9)+ABS(
top+row—16)) MOD3+129

12@ PRINTTAB(start+length, top+row)

118 PRINTTAB(start+length,bottom—ro
w);ll n

120 NEXT length

13@ NEXT row

14@ vDU 38

Now let’s have a look at the graphics screen. There is no complicated way
of “entering” the graphics screen — when you enter a mode the whole of the
screen is available for graphics, as it is for text, of course. We shall

16

concentrate on the former. Actually, the ground we’re going to cover is fairly
simple — we are going to learn to draw lines in various colours. The command
for drawing lines is DRAW and the command to change colours is GCOL,
which stands for “graphics colours”. The statement COLOUR is used for text
colours only.

Firstly, let’s consider the coordinate system for the graphics screen, as
shown in Figure II.

Three things to note: The origin — point (0,0) — is at the bottom left-hand
corner of the screen. Y increases as it goes upwards; the “cells” of the
coordinate system range from 0 to 1279 along the X-axis (horizontally) and O
to 1023 along the Y-axis (vertically). Each is measured in “graphic units”

) (1279,1923)
1623
A
|
|
]
y! o
: (646,512)
I
|
|
|
|
e _y1219

Figure Il Graphics Screen

(gu); when you change modes (assuming that you pick a mode capable of
supporting graphics), the physical positions of the points don’t change. That
is, (0,0) will still be at the bottom left-hand corner of the screen, (1279,1023) at
the top right, and (640,512) at the centre of the screen.

Let’s try drawing some lines on the screen. To do this we imagine
something called the graphics cursor, which is invisible yet occupies a specific
point on the screen. We use the command DRAW to draw a line between the
last two points “mentioned”, or “visited” by the graphics cursor. For
example, if the last point the graphics cursor had “ended up” at was (0,0), then
DRAW 1279,1023 would draw a line between (0,0) and (1279,1023), which
is diagonally from bottom left to top right across the screen.

To position the graphics cursor at a point — say the middle, (640,512) —we
use the command MOVE 640,512. This places the cursor at the specified
point — without making any mark on the screen. Notice that neither MOVE
nor DRAW use brackets with the points they are specifying.

1@ REM PROGRAM V
28 MODE S5

Z@ MOVE @,0

49 DRAW 1000,1000

17

Let’s try a simple program using these ideas — Program V. As you can see,
this draws a simple diagonal line from (0,0) to (1000,1000). Now try drawing
it with the additional line 50 DRAW 1000,0 This draws a line vertically down
to (1000,0), a point on the X-axis. Remember, DRAW connects the last point
the cursor visited — in this case (1000,1000) from line 40 — to the point
specified in the DRAW command, which in this case is (1000,0).

Perhaps you can see how 60 DRAW 0,0 will complete a triangle by
drawing a horizontal line to the origin. The following completes the square
and adds the second diagonal:

7@ DRAW 0, 1000
8@ DRAW 1000, 1000
9@ MOVE 0,1000:DRAW 1000,0

The final outline is shown in Figure III. Note the MOVE necessary in line
90. I think that it is impossible to obtain the screen shown in Figure III by
using just DRAW without using MOVE or going over the same line twice. Is
there anyone out there who can prove me wrong — or at least prove me right?

Before abandoning Program V, try it in Mode 4. There are two things to
notice here: When you change mode, the position of the triangle does not alter
on the screen — graphics points are fixed and the lines drawn on the screen are
much finer than in Mode 5. The latter is because Mode 4 has “higher

(9,1896) (1999,1996)

8.9 (1699,9)
Figure III: Figure produced by Program V

resolution” than Mode 5. That is, it works to a finer “grid” or, if you like, it
draws with a finer pen. Mode 4 can fit in more characters per line than Mode 5
because of this “fineness” or higher resolution. In a particular graphic mode
the fewer characters per line it can support, the coarser it draws its graphic
lines, which means the lower its resolution. So while changing modes may not
cause our picture to be drawn in different positions, it certainly affects the
detail available.

Now to change the colour of the lines we use the GCOL statement. In
Mode 5, assuming we haven’t changed the logical colour assignments with
VDU 19: GCOLO,1 will cause future lines to be drawn in red; GCOLO0,2

18

gives yellow lines; GCOLO,3 gives white lines; GCOLO0,4 gives black lines.

We say that GCOLO changes the graphics foreground colour to the logical
colour specified after the comma. At the moment we are going to treat the
command as if it were always GCOLDO followed by a logical colour number.
In fact, as we shall learn, we can use numbers other than zero before the
comma.

Being able to define a graphics foreground colour suggests that we should
be able to define a background colour. This works in very much the way it did
for text colour — to define a background colour we use GCOLO, with the
logical colour number we want as background PLUS 128. For example,
GCOLO0,129 will give us a red background in Mode 5 (assuming the standard
colour assignments).

Just as we used CLS to clear the screen to the background colour while
using the text screen, so we use CLG to obtain the same effect on the graphics
screen. Thus GCOLO,130 : CLG will clear the graphics screen to yellow.
Note that although CLG and CLS may appear to achieve the same effect, this
is solely due to the graphics and text screens overlapping. If they were
separate, they would only effect their respective “windows”.

And just as CLS can be obtained with Ctrl+L so CLG can be obtained
with Ctrl+P. Program VI shows the final version of the last program with

1@ REM PROGRAM VI
2@ MODE 5
@ vDU 19,0,5,0,0,0:VDU 19,3,4,0,0

4@ GCOL®,128:CLG

5@ GCOL@,1

4@ MOVE 2,0

7@ DRAW 1000, 1000 .
80 GCOL@,2

9@ DRAW 1008,0

100 DRAW 0,0

11@ DRAW @, 10200

120 DRAW 1000, 1000

13@ GCOL@,3

140 MOVE 0,1000:DRAW 1200,0

graphics colours added. Try giving it a nicer colour scheme!

Program VII should demonstrate amply the difference between CLG and
CLS — lines 40 and 50 set up different background colours for them to clear
to. Press ‘S’ to stop the program. Program VIII uses all the above techniques
to produce a “sunburst” of colour from the origin. It draws 100 lines of
random colour to random points on the screen.

19

1@ REM PROGRAM VII
2@ MODE S

3@ REPEAT

4@ COLOUR 129

5@ GCOL®,130

6@ CLS

7@ A$=GET$

8@ CLG

9@ A$=GET$

1@@ UNTIL A$="5"

Try adding all, or random combinations of the following lines to Program
VIII:

1@5 MOVE 1279,0:DRAW x,y
1@6 MOVE 1279,1023:DRAW x,y
187 MOVE @,1@23:DRAW X,y

Can you predict the outcome before running it?

1@ REM PROGRAM VIII

2@ MODE S

32 vbuU 19,0,5,0,80,0:VDU 19,3,4,0,0

.8

4@ count=80

S@ REPEAT

60 count=count+l1

7@ MOVE @,0@

88 x=RND{(127%):y=RND(1823)
2@ GCOL@,RND(3)
100 DRAW %,y
11@ UNTIL count >99

Another variation is to alter the assignment of logical colours in the
sunburst after it has been drawn. For this add:

12@ REPEAT

13@ A=RND(4)—1:EB=RND(7)

14 VDU 19,A,B,0,0,0

15@ FOR I= 1 TO 2000:NEXT I
16@ UNTIL FALSE

Program IX plots a series of random triangles over the screen, using a
simple procedure PROCctriangle that produces an equilateral triangle using
MOVE and DRAW. Figure IV should make the workings of this procedure
clearer. The actual values of x,y and length are passed to the procedure in line

20

i@ REM PROGRAM IX

2@ MODE S5

@ vbu 19,3,4,0,0,0

4@ TALLY=0

5@ REFPEAT

68 XPOS=RND (1000’ : YPOS=RND (80@)
7@ SIZE=RND (50@)

80 PROCtriangle(XF0OS,YFOS,S5I1ZE,TAL

LY MOD3+1)

78 TALLY=TALLY+1

18@ UNTIL TALLY=5@

11@ END

12@ DEFFPROCtrianglei{x,y,length,colo

ur}

138 LOCAL height

148 GCOLB,colour

15@ height=length%*1.732/2

168 MOVE x,y

170 DRAW x+length,y

188 DRAW x+length/2,y+height
19@ DRAW x,y
20@ ENDFROC

(x+length/2,y +height)
W, N

|
|
: height=
| 1.732xlength
|
|
»

(x,y) (x+length,y) V

“ length >
Figure IV

80 as XPOS, YPOS and SIZE respectively, which have been determined
randomly.

Program X then uses exactly the same procedure to nest three equilateral
triangles within a fourth. To round off this chapter, you might like to define a
procedure for drawing a rectangle — by defining two corners, or alternately

21

using one

corner, length and breadth. Then, as in Program IX, use this

procedure to draw random rectangles on the screen.
Finally, as in Program X, try nesting the rectangles within one another.

1@
20
3@
4@
50
60
7@
80
]
100
110
120

REM PROGRAM X

MODE 5

VDU 19,3,4,0,0,0
TALLY=0

SI1ZE=1000
HEIGHT=1.732%*SI1ZE/2
REPEAT

BASE=SIZE - TALLY*250

UP=HEIGHT*TALLY/4

XFPOS=10@ + 25@#TALLY/2
YPOS=UFP/2 + 100

PROCtriangle (XFOS,YPO5,BASE, TAL

LY MOD3+1)

13@
140
158
168

ur)

22

17@
180
190
200
218
228
230
248

TALLY=TALLY+1

UNTIL TALLY >3

END
DEFPROCtriangle(x,v,length,colo

LOCAL height
GCOL@,colour
height=length#1.732/2
MOVE x,vy

DRAW x+length,y

DRAW x+length/2,y+height
DRAW =,y

ENDFROC

Chapter 3: Areas of Colour

SO far we have learned how to draw coloured lines on the graphics screen and
use them to outline various shapes. Now we shall see how to fill those shapes
with colour so as to really bring the screen to life.

Firstly, let’s recap. We learned these new commands:
GCOLO, which sets the graphics colours.
MOVE, which moves the (imaginary) graphics cursor to the point specified.
DRAW, which draws a line, in the current foreground colour, from the last

1@ REM PROGRAM 1
20 MODE S

30 GCOL @,1

4@ GCOL @,13@:CLG
5@ MOVE 10,10

6@ DRAW 1270,10@
78 DRAW 640,1020
80 DRAW 10,10

point visited by the graphics cursor to the point specified.

Program I illustrates the use of these commands to draw a red triangle
similar to that of Figure I. We can cause the triangle to be filled in with colour
by using a new statement, PLOT 85. Before we go into it in detail, I suggest
that you run Program II to get a feel of what happens — it draws the same
triangle as Program I, this time completely filled with red, the graphics
foreground colour.

When you think about it, you can specify a triangle on the screen by giving

1@ REM PROGRAM I1I
2@ MODE S

30 GCOL @,1

4@ GCOL @,13@:CLG
580 MOVE 10,10

6@ DRAW 1270,1@

7@ PLOT 85,4640,1020

23

(640,1020)

(10,10) First line (1270,0)

Figure I: Drawing a simple triangle

the coordinates of its three corners. Now Plot 85 is the BBC Micro’s
triangle-filling command. When the machine receives this command it needs
to know those three sets of coordinates. You always follow PLOT 85 with the
coordinates of one of the points. For example, in Program II, line 70 uses
PLOT 85,640,1020, since the coordinates of the top of the triangle are
(640,1020). But how does the BBC Micro know where to get the other two
points to complete the triangle?

Well, it takes it for granted that the other two points are the last two points
the graphics cursor has visited before it meets the PLOT 85 statement. So
when you are programming you have to keep track of the last two positions
the graphics cursor has visited — remembering that the MOVE and DRAW
affect this. If the last two points are unsuitable for the triangle you want to

(640,1020)
Final point
visited
(line 70)

(10,10) (1270,10)
First point visited Second point visited
(line 50) (line 60)

Figure II: How Program II works

24

draw you have to fix this by using MOVE to visit the appropriate points.

In Program II lines 50 and 60 use MO VE to visit the first two points of the
triangle. Line 70 then uses PLOT 85 to specify the last point and fill in the
triangle defined with the current foreground colour. Figure II should make
this clear. This ability to fill triangles is the key to the whole business of
graphics. Virtually all the other shapes you see in BBC Micro programs are
constructed from triangles — even the circles!

It is worth spending some time now playing with variations of Program II.
It’s easy to read and understand what we've been doing so far — but it is
another thing to put the ideas to use. So please, before you continue, have a go
at writing programs based on Program II to draw your own triangles on the
screen. Try changing their size and colour.

1@ REM FROGRAM I1I

28 MODE S

38 vDU 19,3,4,0,0,0

48 vDU 19,0,7,0,0,8@

50 GCOL @,128:CLG

68 REPEAT

78 firstx=RND(120@)

880 firsty=RND{1000)

@ secondx=RND (120@)

188 secondy=RND (1806)

112 thirdx=RND (1200)

120 thirdy=RND (1008)
130 colour=RND(3)

1480 GCOL @,colour
15@ MOVE firstx,firsty
16@ MOVE secondx,secondy
170 PLOT 85,.,thirdx,thirdy
180 FOR I=1 TO 1@@0@:NEXT I
1980 UNTIL FALSE

Then write a program to put two on the screen at once. Can you make them
different colours? What happens if they overlap? And what happens if you
change MOVE in lines 50 and 60 to DRAW? (Putting in a line 75 to change
the graphics colour might help here.)

Program III uses the ideas of Program II to generate a random sequence of
triangles.

Line 20 sets the mode.
Lines 30 and 40 alter the colour assignments of logical colours 3 and O
respectively.

25

Lines 60 and 190 make up the REPEAT UNTIL LOOP which generates the
triangles.

Lines 70 to 130 pick out at random the three points (firstx firsty), etc. and
choose the colour.

Lines 150 to 170 do the actual work of plotting the triangles.

150 and 160 MOVE the cursor to the first and second points respectively.
Line 170 fills the triangle between these and the third point with a PLOT 85.

1@ REM PROGRAM IV

20 MODE S

32 vDU 19,3,4,0,0,0

4@ tally=@

5@ REPEAT

6@ xpos=RND (1000) : ypos=RND (828)
78 size=RND(50@)

8@ PROCtriangle(xpos,ypos,size,tal

1y MOD 3+1)

8 tally=tally+1

108 FOR wait=0@ TO S@0:NEXT wait
11®@ UNTIL tally=50

12@ END

130 DEFPROCtriangle(x,v,length,colo

ur)

14@ LOCAL height

158 GCOL @,colour

168 height=length#*1.732/2

170 MOVE =,v

188 MOVE x+length,y

19@ PLOT 85,x+length/2,y+height
208 ENDPROC

If the program were any more complex it would have been better to put the
triangle-drawing part of it in a procedure. This is the strategy we adopt in
Program IV, which prints out 50 random equilateral triangles on the screen
by repeatedly calling PROCtriangle.

If you experience a feeling of déja vu when you look at PROCtriangle,
don’t worry — it is virtually identical to the procedure of that name in the last
chapter’s Program IX, save that we use PLOT 85 since we are filling in
triangles rather than drawing outlines. There’s a lot to be gained from
comparing both procedures.

Figure III should also help make PROCtriangle clearer. Line 60 randomly
chooses the position of the left hand corner of the triangle (xpos,ypos). Line 70

26

(x + length/2,y + height)

height =
1.732*length

I
I
I
I
I
I
I
]
(x,y) (x+length,y)

- length L
Figure III: PROCtriangle variables

fixes the size of the triangle. tally counts the number of times the REPEAT
UNTIL loop (lines 50 to 110) is repeated. A little thought should show you
that tally MOD 3 + 1 returns the values 1,2,3,1,2,3,1,2,3 cyclically. We use
this to cycle through the colours for the triangle by passing tally MOD 3 + 1
to the variable colour in the procedure call (lines 80 to 130).

In the last chapter, we not only used PROCtriangle to draw the random
triangle outlines, we also used it in Program X to draw the nested triangles. I
have followed in the same vein by using PROCtriangle from Program IV to

produce a series of colour-filled triangles, as you will see if you run Program
V.

1@ REM PROGRAM V

2@ MODE S

32 vDU 19,3,4,8,0,0

48 tallv=0@

50 size=1000

&0 height=1.732%size/2

7@ REPEAT

80 base=size—tally*25@

20 up=height#*tally/4

100 xpos=10@+25@8*tallvy/2

110 ypos=up/2+100

128 PROCtriangle{xpos,ypos,base,tal
ly MOD 3+1)

138 tally=tally+1

14@ UNTIL tally>3

27

158 END

160 DEFPROCtriangle({x,y,length,colo
ur)

178 LOCAL height

188 GCOL @,colour

19@ height=length#*1.732/2

208 MOVE x,v

21®@ MOVE x+length,y

228 PLOT 85,x+length/2,yt+height

238 ENDFPROC

In Program V we not only use tally to once more cycle through the colours,
but also to alter the position and size of the triangle, so that each successfully
nests within the preceding one (lines 80 to 110). Program VI uses two different
coloured triangles positioned to give a multicoloured rectangle. It does this by
repeating our triangle drawing formula:

1. MOVE to first point
2. MOVE to second point
3. PLOT 85 to third point.

1@ REM PROGRAM VI

2@ MODE S

32 vDU 19,3,4,0,0,0
4@ REM First triangle
58 GCOL @,1

&8 MOVE 6,8

78 MOVE 1279,0

88 PLOT 85,127%9,1823
8 REM Second triangle
108 GCOL @,3

ii@ MOVE @,0

iZ@ MOVE @,1@23
1Z@ FPLOT B85,127%,1823

Figure IV should make this clear. This is not the most efficient method,
though. If we take care in choosing the order of the points we visit we can
arrange that the last two points visited in order to draw the first triangle
become the first two points of the second. That is, having drawn the first
triangle, we can then draw the second with just another PLOT 85 to supply
the final point.

Program VII uses this method to produce the same output as Program VI.
Figure V should illustrate the idea. To show how important the order of

28

(0,1023) (1279,1023) (1279,1023)
Second Third Third
point point point
Second
g
First
(0,0) (0,0) (1279,0)
First First Second
point point point

Figure IV: Constructing a rectangle from triangles

1@
20
30
40
5@
=17
78
8a
0
10a
11@

REM PROGRAM VII
MODE S

vDU 19,3,4,0,0,0
REM First triangle
GCOL @,1

MOVE 1279.,@

MOVE 1279,1823
PLOT 85,0,0

REM Second triangle
GCOL @,3

FLOT 85,0,1023

visiting the points is when you’re using this method, try swapping lines 60 and
70, then run the program.

If you think about it we can use this technique in a procedure to draw
rectangles — though we’d probably have both triangles the same colour. In
fact, we use this in PROCrectangle in Program VIII. The procedure assumes
that the sides of the rectangle are parallel to the axes, that is that the rectangle
does not slope. Figure VI should help make the procedure’s variables clear.

Final point (1279,1023)
(0,1023) Second point
(0,0) (1279,0)
Third point First point

Figure V: Efficient rectangles!

29

|

breadth|

l

(xpos,ypos)
—

length __,

Figure VI: Variables used in Program VIII

The program simply computes random values for those variables (once
more using tally MOD 3 + 1 to pick colours) and calls PROCrectangle 50
times to produce random rectangles in much the same manner as we
produced random triangles in Program IV.

1@
20
30
4@
1"}
=17}
70
80
@

REM FPROGRAM VIII

MODE S

vDU 19,3,4,0,0,0

tally=0

REPEAT
®xpos=RND (10@8) : ypos=RND (8@@)
length=RND (50@)

breadth=RND (58@)

PROCrectangle (xpos,ypos,length,

breadth,tally MOD 3+1)

10a
110
120
130
140

tally=tally+1

FOR wait=0 TO S500@:NEXT wait
UNTIL tally=50

END
DEFFPROCrectangle(xpos,ypos,widt

h,height,colour)

150
160
172
180
190
200

GCOL @,colour

MOVE xpos+width,ypos

MOVE xpos,ypos

PLOT 85,xpos+width,ypos+height
PLOT 85,xpos,ypos+height
ENDFPROC

Continuing with this theme of adapting previous programs, Program IX
uses PROCrectangle to produce a series of nested rectangles in a manner
strictly analogous to the way that Program V produced nested triangles. Lines
70 to 100 ensure that successive rectangles nest by altering the side lengths
and the corner positions.

Although I normally use the above procedure for rectangles, there is

30

18

REM PROGRAM IX

2@ MODE S

3@ vDbU 19.3,4,0,0,0

4@ tally=8

S8 length=1800:breadth=80@

&8 REPEAT

78 width=length#*{(4-tallvy)/4

8@ height=breadth#*(4-tally)/4

8 xpos=100+50@%*tally/4

188 ypos=100+4@0*tally/4

11@ PROCrectangle(xpos,vypos,width,h
eight,tally MOD 3+1)

120 tally=tally+1

138 UNTIL tally>3

14@ END

158 DEFPROCrectangle (xpos,ypos,widt
h,height,colour)

168 GCOL @,colour

178 MOVE xpos+width,ypos

18@ MOVE xpos,ypos

19@ PLOT 85S,xpaos+width,ypos+height

200 PLOT B5,xpos,ypostheight

21@ ENDPROC

another way of defining a rectangle (again assuming it doesn’t slope). This is
by simply giving the procedure the co-ordinates of two diagonally opposite
corners of the rectangle

Figure VII shows the method. Program X uses it in PROCrectangle to
produce a “staircase” of six rectangles. Each successive rectangle is drawn
ystep graphical units taller than the preceding one and xstep graphical units to
the right. Although the output may seem rather trivial, it is by using much the

same techniques that we are able to draw bar charts and graphs.

(secondx,secondy)

|

ul [
(firstx,firsty)

Figure VII: Alternative rectangle definition

31

1@ REM PROGRAM X

20 MODE S

38 VvDU 19,3,4,0,0,0

48 vbU 19,0,5,0,0,0

S50 bottomx=0:bottomy=0@

60 topx=@:topy=@

70 xstep=213:ystep=170

860 counter=0

9@ REPEAT

100 colour=counter MOD 3+1
110 topy=topy+ystep

120 topx=bottomx+xstep

130 PROCrectangle(bottomx,bottomy,t

opx ,topy,colour)

140 bottomx=topx

150 counter=counter+l1

168 UNTIL counter=é

17@ END

180 DEFPROCrectangle(firstx,firsty,

secondx ,secondy,colour)

198 GCOL @,colour
200 MOVE secondx,firsty
21® MOVE firstx,firsty
220 PLOT 85,secondx,secondy
230 PLOT 85,firstx,secondy
248 ENDPROC

In the meantime, why not practice your graphic techniques by writing
programs to draw simple, multicoloured pictures constructed from triangles
and rectangles? Houses, rockets and boats seem to be favourite subjects.

32

Chapter 4: Looking into Windows

RIGHT - lots of “hands-on™ in this chapter, so let’s get to it! Enter the
following:

MODE 5

VDU 28,0,31,9,0
COLOUR 129
CLS

What exactly is going on? Well, if you cast your mind back you’ll
remember that the display we look at is actually composed of two screens as
far as the BBC is concerned, one on top of the other. They were called the
graphics and text screens, and when you first switch on or change mode they
overlap.

When we used PRINT, TAB(), COLOUR and CLS we were using the text
screen. When we used MOVE, DRAW, PLOT, GCOL and CLG we were
using the graphics screen. Normally both screens are on top of each other,
and we might be tempted to think of them as really the same thing.

They are quite separate, though. If you doubt me, set the graphics
background to one colour and the text background to another. Then
alternately try CLS and CLG. That should convince you!

But to return to our present problem, if you've done what I asked you
should be left with a screen red on the left half and black on the right, with
some remnants of your typing. VDU 28 has restricted the BBC Micro’s text
screen to the left half of the display. To use the jargon, we have created a text
window. We'll go into the details in a moment. Let’s just prove that we have
made such a window and see what it means.

Type CLG. Everything disappears to leave a blank screen, save for the
prompt and the flashing cursor. You see, the graphics screen is still full sized,
and when you clear it you also wipe out what’s on the text screen — that is, the
red rectangle disappears. This should become clearer in a moment.

Notice that the prompt is written on a red background. After all,*“>"is a
text character, and so is printed on the text background, which is red.

Now hold down a key and keep it down so that it repeats. Surprised? The
repeated letter only gets halfway across the screen before starting a new line.
This is because we have restricted the text screen to half the screen’s width.

In Mode 5 the screen is 20 characters wide, numbered O to 19, as you can
see from Figure I. Now you can restrict this text screen to any particular
rectangular “chunk” or window you choose. Of course, that rectangle mustn’t

33

31

Figure I: Text screen in Mode 5

slope, it must be upright.

We have seen how we could fix such a rectangle with just two points, the
opposite corners. To define a text rectangle, or window, we use VDU. 28
followed by the character co-ordinates of the bottom left corner of the screen,
then those on the top right corner.

Look at Figure II. This shows the text window we set up at the beginning of
the article. To define, or fix the shaded area as a text window we typed VDU

28,0,31,9,0. Notice that we use commas to separate the figures, but there is
no final comma.

(00) 9.0 (19,0)

Text screen

0,31) (19,31)

Figure II: Our re-defined text screen

Although we have defined a text window, the graphics screen works
normally. Try:

MOVE 0,0
DRAW 1279,1023

The graphic commands act as they usually do and overwrite the text

34

window as if it weren’t there. After all, the graphics screen still fills the whole
of the display, and we have only limited the text screen.

Before you clear the screen, press the Return key and keep it down to see
what happens. When the prompt reaches the bottom the text window will
scroll as normal. However, the only part of the line we drew that scrolls up is
the part that crosses the text window. The rest of the line is immune.

This means that if we use our windows carefully we can stop text and
graphics intefering with each other.

Now don’t think that the text window has to go on the left side of the screen,
or from top to bottom. It can be any rectangular portion of the screen. Try
VDU 28,7,20, 12,11 which sets up the text window in Figure III. (Notice that
you are still in the old text window as you type this — it doubles back on you.)

0,0 (19,0)

(12,11)

(7,20)

0,31) (19,31)

Figure I1I: Altering our text window

Now type CLG which should clear the whole display, since the graphics
area hasn’t been restricted. Then type CLS. The text window shown in Figure
I11 should appear.

Try typing a few words in here and see what happens. This proves that:
® You can have a text window anywhere on the screen.
® Redefining a text window (that is using VDU 28 twice) automatically
destroys the old one, although it doesn’t clear it.

Now type:

VDU 26
CLS

Hopefully the whole screen will turn red. The effect of VDU 26 is to restore
the text and graphics windows to the state they were in when you switched on
— totally overlapping.

35

1@ REM PROGRAM 1

2@ MODE S5

38 vDhU 28,7,20,12,11
4@ FOR I= @ TO 31

5@ PRINT TAB(I)"*"
68 AF=GET#

7@ NEXT 1

80 AF=GET#*

7@ CLS:VDU 26

Program Il illustrates the use of the simple TAB() function in a text window.
Line 30 sets up a text window identical to the one we last used. 40 to 70 form a
loop attempting to print an asterisk in all positions from TAB(0) to TAB(31).
The A$=GETS in line 60 is simply to step you through each printing, as you
have to press a key before the program continues. Line 90 returns the screen
to normal.

It should be immediately apparent that the zero position as far as TAB() is
concerned is at the left of the new text window, TAB(1) is next to that and so
on. Since the text window is only six characters wide (columns 7 to 12 on the
original display, 0-5 on our text screen), TAB(6) will be a complete line across
the text screen plus one column. That is, the asterisk will appear to miss a line.
Similarly, TAB(7) is a complete line plus two characters and so on.

This wraparound effect is exactly what happens with large values of TAB()
on the original text screen. Program II demonstrates this.

1@ REM PROGRAM I1I
28 MODE S5

38 FOR I= 1 TO 255
48 PRINT TAB(I)"="
50 AF=GET#

68 NEXT I

The main point is that in a text window TAB(0) is the left hand column of
that window and TAB() only considers the width of the text screen in its
workings.

Much the same thing happens with the “multiple” TAB(,) such as TAB
(3,4). TAB(0,0) is at the top left of the text window. However, unlike the
simple TAB(), if the number in the brackets exceeds the size of the window,
this multiple TAB(,) ceases to work. (It also collapses in this way when you
go out of bounds on the normal screen.) Program III illustrates the point.

36

1@ REM PROGRAM III
2@ MODE S

30 VDU 28,7,20,12,11
42 FOR I = @ TO 31
50 PRINT TAB(I,I)"%"
6@ A$=GET$

7@ NEXT I

B0 A$=GET$

9@ CLS:VDUZ6

Experiment with setting up your own text screens. See if COLOUR works
normally. What happens when text and graphics overlap? Do they overwrite
each other? What exactly happens when scrolling occurs? What effect does
getting your co-ordinates mixed up and using the top right corner instead of
the bottom left have, as in VDU 28,12,12,7,20?

Just as we can define a text window on the screen, so we can define a
graphics window. That is, we can restrict the area where our graphics
commands apply to a rectangle within the whole screen.

We use VDU 24 to do this, followed by the co-ordinates of the bottom left
corner of the window and the top right hand corner. Of course, we now use the
co-ordinates of the graphics screen not the text screen. To define the graphics
window shown in Figure IV we use VDU 24,200:300:1000:800;

(1279,1023)

(1000,800)

(200,300)

(0,0)

Figure IV: Defining a graphics window

Notice that while we use a comma to separate the VDU 24 from the list of
co-ordinates, after that each co-ordinate is followed by a semi-colon (3). Also
there is a final semi-colon — if you omit this your programs will crash.

Now enter MODE 5, then:

VDU 24,200;300;1000;800;
COLOUR 129
GCOL 0,130

37

Now try:

CLS
CLG

alternately until you get the hang of things. Nice, isn’t it! Notice how clearing
the text screen also clears the graphics area to the text background colour.
This is because the text window still occupies the whole screen, so when you
clear it the graphics screen, which also overlaps it, suffers the same fate.
Similarly, text gets printed across the graphics area.

The only way to avoid this problem is to define two entirely separate text
and screen areas.

Now with the graphics screen as defined above try:

MOVE 0,0
DRAW 1000,1000

You’ll see that only the part of the line that crosses the graphics window
appears — you really have a “window” onto part of the original graphics
screen. So (0,0) is still where it was on the graphics screen, as is (1000,1000).
Having a graphics window does not automatically move (0.0) to the bottom
left of that window.

The only graphic effects you will see from your graphic commands will be
those that occur within the region of your graphics window. Try drawing a
few triangles with parts outside the graphics windows to see what I mean.

Just as with text windows, defining a new graphics window immediately
cancels the old one (without clearing it from the screen). Also VDU 26 still
has the effect of restoring the text and graphics areas to their original extent.

We can use the idea of defining graphics windows to draw rectangles on the

i@ REM FROGRAM IV

2@ MODE S5

I8 VvbU 19,3,4,0,0,0

4@ FOR loop%= 1 TO 1@

5@ leftx=RND(102@):rightx=RND(12080
)

&8 IF leftx>rightx THEN store=left
w:leftx=rightx:rightx=store

78 letty=RND(1888@) :righty=RND (1808
)

880 IF leftyi righty THEN store=left
yv:lefty=righty:righty=store

9@ VDU 24,leftxsleftysrightxs;right
Y
108 GCOL@,RND(3)+128:CLG
11@ NEXT loopZ

38

screen rapidly. We just define a graphics window where we want the
rectangle, then clear to the appropriate background colour. Program IV
illustrates the techniques, by printing out ten random rectangles on the screen.

Finally, how about writing a simple program for children? Define a
graphics window in the top two-thirds of the screen and a text window on the
bottom third. Try not to let them overlap.

Then draw a house piece by piece in the graphics screen. Each time you
press a key another bit appears. As each part appears, make sure that the
name of that part is printed on the text screen. If you can manage that, you are
well on the way to mastering graphics!

39

Chapter 5: Getting Coordinated

WE now know how to define graphics windows with the use of VDU 24.
However, when you define a window the graphics coordinate system does not
change in line with this new window.

What this means is that (0,0), the point at the bottom of the graphics screen
at switch on, doesn’t automatically move to the bottom left hand corner of the
window. This can lead to graphics effects being chopped off, as Program I
demonstrates.

1@ REM PROGRAM I

28 MODE S

30 VDU 24,2003 300; 10003 800;
4@ vbUu 19,0,5,0,0,0

58 vbU 19,3,4,0,0,0

68 count=@

7@ REPEAT

80 count=count+l1

98 MOVE 0,0

10@ x=RND(1279): y=RND(1823)
110 GCOL @®,RND(3)

120 DRAW x,y
138 UNTIL count>99

Line 30 defines a graphics window, illustrated in Figure 1. Only the
graphics within this window are displayed. To see the full sunburst effect of

(1279,1023)

(1000,800)

(200,300)

(0,0)

Figure I: Program I's graphics window

40

the program try leaving out line 30. Incidentally, lines 20 and 30 have to be in
that order. Changing modes destroys any graphics or text windows, so these
must be defined after you change.

We could make sure the beginning of our sunburst fits into the graphics
window by MOVEing to its bottom left hand corner each time before we
DRAW. That is, we could change line 90 to 90 MOVE 200,300

There is a neater way. Simply tell the micro that, from now on, it is to
consider the point (0,0) — called the origin — to be at the bottom left of the
graphics display. We do this with the VDU 29 command. This allows us to
place the origin at any point on the display.

For instance VDU 29,640;512; places the origin at the centre of the screen.
This means that from now on (0,0) will refer to the middle of the screen. Try:

MODE S

VDU 29,5640;512;
MOVE @,@

DRAW 200,200
DRAW 200,08
DRAW @,0

to prove that, as far as the micro is concerned, (0,0) has been moved to the
centre of the screen. Notice how we use the command to move the origin:
® VDU 29 followed by a comma.
® The X co-ordinate followed by a semicolon.
® The Y co-ordinate followed by another semicolon.
Make sure you get your commas and semicolons in the right places!
In Program Il line 40 ensures that the origin is moved to (200,300), which is
at the bottom left hand corner of the graphics window defined in line 30.

1@ REM PROGRAM II

20 MODE 5

30 VDU 24,200; 300; 1000; 800;
4@ VDU 29,200; 300;

S vDU 19,0,5,0,0,0

&0 VDU 19,3,4,0,0,0

70 count=0

80 REPEAT

9@ count=count+l

1@ MOVE 0,0

118 x=RND(1279) : y=RND (1023)
120 GCOL @,RND(3)

130 DRAW x,y

14@ UNTIL count>99

41

This ensures that the sunburst starts at the bottom of the window. The
MOVE 0,0 of line 100 makes certain that the DRAW of line 120 starts from
there. Moving the origin in this way is more formally known as “redefining the
graphics origin™. You can use this idea of redefining the origin without using a
graphics window — though you often do, since they work quite nicely together.
Look at Program III.

1@ REM PROGRAM III
2@ MODE S

30 VDU 29,6403512;
49 VDU 19,0,5,0,0,0
s@ vbU 19,3,4,0,0,0
&0 count=0

7@ REPEAT

80 count=count+1

9@ MOVE 0,0

100 x=RND (4£40@) : y=RND (512)
1120 GCOL @,RND(3)
120 DRAW x,Y
130 UNTIL count>99

Line 30 moves the origin to the centre of the screen. Although we haven’t
defined a window here, you might think that we are restricted to the top right
hand corner of the screen because of the position of the origin. We can use the
rest of the screen, though, if we use negative co-ordinates. These involve using
numbers smaller than 0, that is, numbers with a minus (‘=) sign in front of
them.

So far we have just used positive coordinates, which are numbers bigger
than or equal to zero. Figure II illustrates the idea. If both coordinates are

Y 0512
axis

(—300,250) (300,250)

=77 -7

1 |

! |

1
. |
X axis : 0,0) |
(~640,0) (—|300.0) (300,0) (640,0)

. |

! |

[I— o i o
(-300,-250) (300,-250)

0,-512)

Figure II: Positive and negative coordinates

42

positive the point will be in region A. If the X coordinate is positive and the Y
coordinate negative, it is in region B. If both coordinates are negative the point
is in region C, while if the X is negative and the Y positive it will be in region D.

Notice that as you go left along the X axis from the origin the figure
following the minus sign increases. That is, —300 is nearer to the origin than
—600. Similarly, as you move down the Y axis from the origin, —250 is nearer
to the origin than —500.

Try running Program III with the following versions of line 100:

100 x=RND(640):y=—RND(512)
100 x=—RND(640):y=—RND(512)
100 x=—RND(640):y=RND(512)

Each version will draw our sunburst at different corners of the screen.
Program IV uses the idea of negative coordinates to produce a full sunburst
effect.

18 REM PROGRAM IV

20 MODE S

30 VDU 29,6403512;

4@ vbU 19,0,5,0,0,0

58 vbu 19,3,4,0,0,0

60 count=0

78 REPEAT

80 count=count+l1

98 GCOL @,RND(3)

108 x=RND(64@) : y=RND(512)
1186 MOVE @,8:DRAW x,y

12@ x=RND (640) : y=—-RND (512)
130 MOVE @0,0:DRAW x,y

14@ x=—RND(4640) : y=—RND(512)
150 MOVE @,@8:DRAW x,y

160 x=—RND (6£4@) : y=RND (512)
170 MOVE @O,0:DRAW x,y

188 UNTIL count>99

Program V uses a procedure, PROCburst, to give the sunburst effect.
PROCburst is defined to allow us to choose the position of the origin
(xpos,ypos) and the maximum size of line.

Variable x and y are then chosen and used in the four combinations of
negative and positive (lines 130 to 170). This gives the sunburst — this time of
one colour — a pleasing symmetry. The procedure is called three times. The
value of xpos is determined by the variable parameter, as is the maximum line
length.

The value of ypos is actually fixed at 512. If you like, you can replace the

43

512 in line 70 with 512/2% count, which moves each successive sunburst
down the screen.

1@ REM PROGRAM V
2@ MODE 5
3& vDUy 19,8,5,8,0,0:VDU 12,3,4,0,0

4@ FOR count=@ TO 2

5@ parameter=11080/ (2 count)

68 GCOL @,count+1

7@ FROCburst (parameter ,512,paramet
er)

8@ NEXT count

28 END

128 DEFPROCburst (xpos,ypos,size)

118 VDU 29,xpos;yposs

120 FOR loop=0@ TO S0

130 x=RND(size):y=RND(size)

140 MOVE @,0:DRAW x,vy

150 MOVE @,0:DRAW x,—vy

168 MOVE @,0:DRAW —x,-vy

178 MOVE @,0:DRAW —-x,y

180 NEXT loop

19@ ENDFROC

44

Chapter 6: Going Round in Circles

NOW we are going to look at drawing circles on the BBC Micro. It would be
nice if we had a CIRCLE command which would allow us to specify the
coordinates of the centre of the circle and the radius we want it to be.
Unfortunately the BBC Micro does not have such a command.

We can, however, design a general purpose procedure to do it —once we’re
sure exactly what we want to do and how to do it! The mathematics behind
drawing circles takes a lot of working out, but you don’t have to understand
the sums to be able to use them effectively.

The secret lies in the use of triangles. Thousands of years ago man found
that he could survey land by the technique of triangulation. Any piece of land
could be approximately divided into a set of triangles. You could then
measure those triangles and find the total area. What we’re going to do is to
divide the circle into triangles, which we can then fill with our PLOT8S5
command — we’ll see exactly how later.

First of all let’s look at a particular set of triangles that should help us to do
the job properly — right angled triangles. In them one of the sides sticks out
vertically from the other — a carpenter would say that the two sides are square
to one another. Mathematically speaking, the two sides are at 90 degrees to
each other — a right angle.

Actually we’ve been using right angled triangles throughout this book to
give our X and Y coordinates. The reason you haven’t noticed is that we
haven’t drawn in the third side. Figure I illustrates the point. The X and Y we

Our
coordinates
(X,Y) | use right P 7 (X.Y)
K | angled - A
: triangles P |
s |
|
Y ot ® :
s Y
| & |
s
| s 1
I A7 !
¥
[1y 6 f—l !
OO __ ! 00 e — — m = = i i i
N X . X

Figu;'e I: Using right-angled triangles to specify coordinates

45

use to give us our coordinates are two sides of a right angled triangle. Notice
the following:

@ The sides we take as X and Y are the two that are at right

angles to each other.

@® We mark the fact that they are at right angles with the sign .

@® The third side of the triangle is opposite the right angle. We call

that side the hypotenuse — though I've labelled it R to make things

easier! It is R graphic units long.

@ I've marked one of the angles 6.

The thing about right angled triangles is that if you know what R and © are
you can easily work out X and Y’s values. We use two of BBC Basic’s
functions, SIN() and COS().

Then, for any particular R and 6: X=R*COS(8) and Y=R*SIN(8) Let’s
not worry exactly how it works, but just put it to work.

The idea is that we can now represent any point on the screen by using
either X,Y coordinates — called cartesian coordinates —or by using R and © —
called polar coordinates. It happens that we can draw circles more easily
thinking in terms of polar coordinates. The trick is that every point on the
circumference, or edge, of the circle is the same distance from the centre — so
for a circle R will remain the same length for all its points. That’s why we're
using R : R for radius.

All we have to do to specify a particular point on the circumference is to
give the value of © that “points” the radius at it. Figure Il shows how we can

T
|
|
|
|
|
|
[
|
R
[
|
|
|
|
|
|
Y

Figure II: Points on a circle

46

use this idea to draw a quarter circle by illustrating how we can divide
the right angle up into nine steps of 10 degrees. In our old system
of coordinates Pointl is (R*COS(10),R*SIN(10)) and Point2 is
(R*COS(20),R*SIN(20)) and so on —ideal for loops that go up in intervals of
10 degrees. If we join all these points together with straight lines, as in Figure
IIa, you can see that the shape we obtain, though not a circle, is fairly close to

The joined
points
approximate
a circle

Figure Ila: Using a polygon to approximate a circle

one. If we had gone up in steps of five degrees the “fit” would have been even
better.

This is how we draw circles. We calculate the points on the circumference
using SIN() and COS(), then join them with straight lines. Provided we
choose our values properly, the approximation to a circle is close enough for
most purposes.

Program I draws a quarter circle. Here, instead of R we’ve used radius%
and set it equal to 1024 (line 30). Line 40 initialises the program by moving the
graphics cursor out to the circumference of the circle. Instead of © we are
using angle% and lines 50-80 form a loop in which angle% increases in steps
of 10 degrees.

Unfortunately the BBC Micro measures angles not in degrees, but in
radians. To use SIN and COS, the angle must be in radians. We don’t have to
worry about this since the micro provides us with a function to convert our
usual degrees to radians, RAD(). We use this in line 60 to change angle% in

47

degrees to angle in radians. Note that we cannot use an integer variable for
angles expressed in radians — they don’t go in nice whole numbers!

1@ REM FPROGRAM I

2@ MODE 4

30 radius’Z= 1024

4@ MOVE radius’Z,.@

S8 FOR angle’%= @8 TO 98 STEP 10

6@ angle=RAD{angleX)

7@ DRAW radius%*C0S(angle) ,radius%
*#*SIN(angle)

8@ NEXT

The conversion done, line 70 then draws a line to the point specified by that
angle.
radius%*CQOS(angle) corresponds to R*COS(8)
radius%*SIN(angle) corresponds to R*SIN(8)

1@ REM PROGRAM I1I

2@ MODE 4

Z0 radius’%Z= 1024

4@ MOVE radiusi%.@

S@ FOR angle’= 0 TO 9@ STEF 10

6@ angle=RAD{(angleX)

72 MOVE 2.8

80 FLOT 85, radius%Z*C0OS(angle) ,rad
iusZ*¥SIN(angle)

9@ NEXT

Program II again draws a quarter circle, this time filling in the triangles
with PLOTS85 (line 80). Notice the move back to the centre (line 70), so that
we have three points for our triangle. Leave it out to see what happens.
Perhaps you could alter the program to a four colour mode, and have each
triangle plotted in a different colour. Also in both programs I and II, the loop
variable can start at 10 rather than 0. Can you see why?

Quarter circles are all very well, but how do we manage full circles? If you
cast your mind back once again to schooldays, you might remember that
there are 360 degrees in a circle. There are 90 degrees in a quarter circle — a
full circle is four times bigger, 360 degrees. All you have to do is to make the
loop variable, angle%, go to 360 instead of 90. SIN() and COS()

48

automatically take care of things for you.

Program III illustrates the technique. The actual calculation of points is
identical with Program II. We have simply moved the origin to the centre of
the screen (line 50), decreased the radius (line 30) and made the high loop

1@ REM PROGRAM III

2@ MODE 4

30 radius%=512

4@ GCOoLe\,1

5@ VDU29,6405;512;

&8 MOVE radiusiZ,@

78 FOR angle’=0 TO 360 STEF 10

80 angle=RAD{angle¥%}

?@ MOVED.D

188 FPLOTBS.radius’i*C0S(angle) ,radiu
sZ#SIN{(angle)

11@ NEXT

parameter 360. Try altering the coarseness of the circle by changing the value
of STEP in line 70. Keep to numbers that go into 360 evenly, such as 15.20,30
and 60.

As you increase the step, which reduces the number of points joined, you
will begin to see that what appears as a circle is actually made up of a series of
straight lines. Such a figure is known as a polygon. What value of step gives
you the six-sided figure called a hexagon?

Program IV uses PROCcircle, a general circle drawing procedure with the
following parameters: xpos% and ypos% give the coordinates of the centre of
the circle, radius% gives the radius and colour% gives the logical colour
number of the circle.

The way the procedure works is identical to Program III, except that at the
end of the procedure the graphics origin is moved back to its original position
(line 180) — a ““tidying up” operation. The main body of the program (lines 10
to 70) calls the procedure four times for four decreasing radii (line 30).

Could you alter the program to, say Mode 2, and have circles of all the
colours? How about giving the circles different origins? Finally, can you alter
PROCcircle so that it just draws the circumference of the circle?

If you start to draw a circle and as you do so, gradually decrease the radius,
what happens? It’s not too hard to see that the edge of the “circle” starts to
spiral inwards. This is the technique we use in Program V . The loop (lines
70-140) repeatedly calculates points on a “circle” (line 100), the radius of
which is shrinking as radius% decreases (line 130).

Program VI produces the same spiral but then uses VDUI19 to alter the
assignments of logical colours so that the colours of the spiral’s segments

49

10
20

30

S12/4

40

bl

ur#)

&0
70
80

REM PROGRAM 1V
MODE S
FOR radius%Z=512 TO0 S512/4 STEF -

colour’%=colour’+1
PROCcircle(64@,512,radius%,colo

NEXT radiusZ%
END
DEF PROCcircle(xposi.yposZ,radi

usZ,colour?)

90
100
110
120
130
140
150
160

LOCAL angleZXZ,anqle
GCOL@A,colour%

VDU29 ,.xposi; yposis

MOVE radiusi’%,@

FOR angle’Z=0 TO 368 STEF 10
angle=RAD (angleX)

MOVE®,0
PLOT8S,radiusiZ*C05(angle) ,radiu

sZ¥SIN(angle)

170
180
190

NEXT
VDUZ?,—xposi;: —yposi:
ENDPROC

appear to rotate. After a suitable delay each segment transfers its colour to its
neighbour on one side while adopting the colour of its neighbour on the other
side. Hence the colours gradually appear to move from segment to segment

10
20
30
4@
So
(=1")
70
80
0
100

REM PROGRAM V

MODE 2

VDU 29,640:512;

radius’%Z=512: counter’=1
angle’Z=18

MOVE radius’Z,@

REFPEAT

MOVE @,0

GCOLA,counter%

PLOT 85,COS(RAD{(angleX)) *radius

Z,SIN(RAD (angle)) ¥radius%

50

110
120
130
140

counterZZ=counter’Z MOD 7+1
angleZ=angle’Z+18
radius’Z=radius’Z—4

UNTIL radiusi<0

giving the illusion of rotation.
You might like to try a similar technique to make waves of colour flow
across the circles of Program IV.

1@ REM FROGRAM VI

28 MODE 2

38 VDU 29,640;512;

4@ radius’Z=512:counteri=1

50 angle%’=18

68 MOVE radius%Z,B

78 REFEAT

8@ MOVE @,0

28 GCOLB,counter’

18@ PLOT 85,COS{(RAD(angleX)) *radius
“%.SIN(RAD (angleX)) *radiusi

118 counterZ=counter%Z MOD 7+1

120 angleZ=angle’Z+18

1380 radius¥’%=radiusi’Z-—-4

140 UNTIL radius%<@

158 REPEAT

168 FOR loop%“=1 TO 7

178 VDU 19,loco0p%, (counterZ+loop?%) MO
D7+1,0,0,0

18@ NEXT loop%“

190 FOR wait’=1 TO 200:NEXT waitX

200 counterZ=counterZ+1

21@ UNTIL counteri>200

228 REPEAT

230 FOR loop%=1 T0O 7

24@ VDU 19, (counter%+loop%Z)MOD7+1,1
oop%4,0,0,0

258 NEXT loopZ

260 FOR wait%=1 TO 200:NEXT waitZ%

2780 counterZ=counterZ+1

280 UNTIL FALSE

51

Chapter 7: Building Your Own Characters

Time for some practical work now. We are going to use the graphic methods
we’ve already discussed, plus some new ones, to produce a Christmas tree
with an appropriate greeting. It’s never too early to start planning for
Christmas!

The finished product is Program VII. Before that, though, we’d better look
at a few of the techniques it uses, the most important of which concern user’
defined characters.)

These characters, as their name implies, allow you to use the PRINT
statement (or VDU) to print out your own special characters on the screen. In
the BBC Micro’s graphics modes, all the characters are drawn on an 8 x 8
grid, each cell of the grid being known as a pixel.

Figure I: Pixel pattern for the letter A

Figure I illustrates how the grid for the letter A is filled out. To print this
letter by using its Ascii code simply enter PRINT CHR$(65) Now the BBC
Micro has several blank grids ready for you to fill. These grids have the Ascii
codes 224 to 255.

Once you’ve filled, say, 224 with the required pattern of cells, to print out
this user defined character, you type PRINT CHR$(224) — and it appears
where the cursor is, with the appropriate foreground and background colours.

Figure I illustrates how you can define your own character. You simply fill
in the cells of the 8 x 8 grid until you get the pattern required. Then all that’s
needed is a few simple sums.

Each column of the grid has a value. The value of the rightmost column is 1,
the one to its left 2, the one to the left of that 4, and so on, doubling each time
until the leftmost column has a value of 128. You may have noticed that these
are the column values of a binary number.

Each row of the grid has a number calculated for it and you add together

52

(e}

iy o P
= 128+16+8+1 = 153
= = | 6442 = 66
= = 32+4 = 36
= = 128+16+8+1 = 153
= = 128+16+8+1 = 153
= = | 64+2 = 66
= 128+16+8+1 = 153

Figure II: User defined characters

the column values of each cell shaded in that row. Figure II shows the idea.
Each row has its number. To teach the computer this pattern we use VDU 23
followed by the Ascii code we’re going to use for it followed by the eight
numbers we’ve calculated for the rows, starting with the top and working
down. All these are separated by commas.

So, to define character 224 to be the pattern shown in Figure II, we use
VDU 23,224,153,66,36,153,153,36,66,153 Program I makes use of this
character. Try altering line 20 to 20 MODE 5 and notice the difference — the
character is spread sideways. This is because the shape of the pixels in Mode 5
differs from that in Mode 4.

1@ REM FPROGRAM I

2@ MODE 4 _
3@ vDU 23,224,153,66,36,153,153,36
166,153

4@ FOR I%=0 70O 19
5@ PRINT TAB(I%Z,I%Z)CHR$(224)
68 NEXT IZ%

A pixel is the smallest point you can plot on a screen. Its size limits the
resolution, or fineness, available. As Figure III shows, in Modes 1 and 4, the

4gu 4g11 4g11
=—4gu—= Bgu—> ~2g~
Modes 1,4 Modes 2,5 Mode 0

Figure III: Pixel sizes in each graphic mode

53

pixel is four graphic units (gu) square, whereas in Modes 2, 5 and O it is
variously oblong.

So when you print out an 8 x 8 pixel grid in Mode 4 it comes out square,
whereas in Mode 5 the wider pixels stretch the figure. Figure IV shows the size
of a character in each graphic mode in terms of graphical units.

—f4pgu——
Modes 2,5

!

32gu

|

16gu
Mode 0
Figure IV: Character sizes
in each graphic mode

You have to allow for this alteration in width when you are visualising your
user defined character. I find it easier to see the character I want in terms of
square pixels, so I've stuck to Mode 1 in Program VII even though it limits the
range of available colours.

Let’s try to print a pattern with our user defined character. We'll simply
print the character three times, in a vertical line. We can use the cursor control
codes to ensure that the characters actually end up vertically aligned.

VDU 8 moves the cursor left
VDU 9 moves the cursor right
VDU 10 moves the cursor down
VDU 11 moves the cursor up

Program II illustrates the technique.

Remember that we can string VDU statements together. Line 40 works like
this: 224 prints the character, leaving the cursor directly to its right. 8 moves
the cursor back left and 10 moves the cursor vertically down, leaving it
directly under the first character. 224 prints the character again. 8 moves the

54

{® REM PROGRAM 11

2@ MODE 4

3@ VDU 23,224,153,66,36,153,153,36
66,153

4@ VDU 224,8,10,224,8,10,224

cursor left and 10 moves the cursor down so that 224 prints the character
vertically under the other two.

We can also use PRINT CHR $(8) to move the cursor left. and so on for the
other cursor movements. Although slightly longer, this has the advantage that
we can add all the characters, user defined and cursor movement, into one
string and then simply print out that string. This results in the combined
characters appearing far more quickly than with the VDU method. (See
Program III.) We use this technique in Program VII. Lines 210 to 290 each
add together the user defined characters required to make the various shapes.
Lines 210, for example, defines a candle. Notice how I use the name candle$
for the combined character string — it’s far more meaningful than, say
shapel $.

132 REM PROGRAM III

2@ MODE 4
38 VDU 23,224,153,66,36,153,153,34
266,153

4@ character$=CHR%(224)+CHR# (8)+CH
R¥(10) +CHR*¥ (224) +CHR# (8) +CHR# (1@) +CHR
¥(224)

5@ PRINT character#

In Program VII the actual user defined characters are defined in lines 170
to 200, which read in the values for each VDU 23 from the DATA statements
in lines 930 to 1060, ‘VDUing’ each parameter at a time (line 190). Notice
how —1 is used in line 1060’s DATA statement to mark the end of the
parameters.

When we print a user defined character, it prints, as we have seen, in the
currently defined foreground and background colour. Suppose, however, that
we want a two-colour foreground, such that the centre pixels of our previous
character and those in the middle of the outer edges are yellow, while the other
pixels are red. (We'll leave the background black.)

You might think that we could do this by defining our character (224) as
before and printing it in red, then overprinting it in yellow with another user
defined character (225) containing only the pixels we want to be yellow. The
red pixels should then show through. Figure V illustrates the idea. However, it

55

= =

= = = — overprintedj— — should =
- = with = = give %:
VDU23,224,153,66,36, VDU23,225,24,0,0,

153,153,36,66,153 153,153,0,0,24

where = is Red and [[[[[is Yellow

Figure V: Overprinting user defined characters

isn’t as straightforward as this, as Program IV shows.

What happens is that the second character’s background is printed, as well
as its foreground, completely overwriting the first character! We need some
way of writing just the foreground of the characters — making the background
transparent.

1@ REM PROGRAM IV

2@ MODE 1

3@ VDU 23,224,153,66,36,153,153,36
66,153

40 VDU 23,225,24,0,0,153,153,0,0,24

5@ COLOUR 1

6@ PRINT TAB(192,15)CHR$(224)

7@ COLOUR 2

80 PRINT TAB(19,15)CHR#$ (225)

We can do this by using the command VDU 5. After such a command, the
micro only prints the foreground of characters. This works not only for user
defined characters, but for the whole character set as well. There is one snag,
though. VDU 5 also causes the characters to be printed not at the text cursor,
but where the graphics cursor is.

Technically, we say that VDU 5 joins the text and graphics cursors.
However, it’s the graphics commands that are used to position the joined
cursors — and to set colours — so I consider that VDU 5 causes characters to
be printed at the graphics cursor.

This means that, after a VDU 35, to print a character at a certain location on
the screen you have to place the graphics cursor there with the MOVE
statement before PRINTing.

The numbers involved might take a bit more thought, but you gain two
advantages. Firstly, you can position your character to the resolution of the
screen, that is, within one pixel. With the TAB statement, you are limited to
the eight pixel resolution of the character grid.

56

Secondly, of course, you only print the foreground of the character —
there’s no background to overwrite things. Another useful aspect of
operations after VDU 5 is that the cursor movement characters still work. For
example, CHR$(8) still moves the graphics/text cursor one whole character
(eight pixels) left from its previous position. Try Program V.

1@ REM PROGRAM V

2@ MODE 1

30 VDU S5

4@ VDU 23,224,153,66,36,153,153,36
, 66,153

5@ VDU 23,225,24,0,0,153,153,0,0,2
4

6@ GCOL@,1

7@ MOVE 64@,512:PRINT CHR$ (224)

8@ GCOL@,2

9@ MOVE 64@,512:PRINT CHR$(225)

100 VDU 4

Notice the use of VDU 4 at the end — this turns off the VDU 5. You should
always tidy up this way — leaving VDU 5 in operation can cause problems.
Try listing a long program with VDU 5 on to see what I mean. Also the
relevant colours are the graphics colours, not the text colours, so we use
GCOLO instead of COLOUR.

A word of warning. Don’t use TAB with VDU 5 on. Although you can get
away with it in OS 0.1, your program won’t work when you upgrade to later
systems.

Now run Program VI. This has the same effect as Program V. In this case
we define a string to print out our multicoloured character (line 50). The latter
might need some explanation. Instead of using GCOLO, 1 we can PRINT
CHR$(18) + CHRS$(0) + CHRS$(1) where CHRS$(18) is in place of GCOL,
CHRS$(0) is in place of 0 and CHRS$(1) is in place of 1.

So the first four CHRS statements of line 60 give the foreground colour 1
(red), followed by the user defined character (224). The next three CHR$
statements change the graphics colour to logical colour 2 (yellow), then
CHRS$(8) performs a backspace, ensuring that CHRS$(225) overprints the
first character.

We use this technique in Program VII to obtain our fairy. Line 270 adds
together the string fairy$, consisting of its body. This is printed over wfairy$
which is the fairy’s body plus wings (PROCfairy, 710-780).

fairy$ and wfairy$ each consists of nine user defined characters,ina 3 x 3
grid. Actually, two of the characters of fairy$ (235 and 237) are completely
blank. Since one variable overprints the other, I decided to keep the grid
standard for easier handling.

37

1@ REM PROGRAM VI

2@ MODE 1

3@ vDbU 5

4@ VDU 23,224,153,66,36,153,153,36
166,153

5@ VDU 23,225,24,0,0,153,153,0,0,2

4

&0 character#=CHR# (18)+CHR#%¥ (@) +CHR
$(1)+CHR$ (224)+CHR# (18) +CHR# (@) +CHR#¥ (
2)Y+CHR% (8) +CHR$ (225)

78 MOVE 640,512

8@ PRINT character#

@ vDU 4

18@ vDU 4

Similarly, we print a filled-in ball, fball$, followed by its outer rim, uball$,

on top of it (PROCballs, 590-690).

The candles are printed out as a combined string (candle$) in
PROCcandles (490-570). The actual tree shape is drawn by printing three
green triangles, the apexes of which overlap (PROCtriangles, 320-390). The

base of the tree is drawn in PROCbase (410-470).

PROCmessage simply prints out a seasonal greeting, using VDU 5 to give

a sort of 3D effect.

10
20
32
40
Sa
&@
70
a8a
70
100
118
120

130
14@
150
160
170
180
190
200

58

REM PROGRAM VII
MODE 1
vDU23:11,0:;0:;0;0
PROCinit
FROCtriangles
FPROCbase
PROCcandles
PROCballs
PROCfairy
PROCmessage
END

REM = === ==am==o=

DEF PROCinit

vDu 19,3,2,8,0,0

vbu 19,8,4,0,0,0
centre’Z=640

REFEAT

READ vdu%

IF vdu’<>—1 THEN VDU vduZ
UNTIL wvduZ=-1

212 candle$=CHR#(18)+CHR$ (@)+CHR% (1
Y+CHR# (224) +CHR#(1@) +CHR#(8)+CHR# (22
5)+CHR# (8) +CHR¥ (1@) +CHR$ (225)+CHR$ (18
)+CHR# (@) +CHRF (2)+CHR$ (11)+CHR#¥(11) +
CHR# (B) +CHR#% (226)

220 REM Unfilled ball

230 uball#=CHR#¥ (227)+CHR# (228) +CHR#
{1@) +CHR# (8) +CHR# (8) +CHR#¥ (229) +CHR$ (2
M

248 REM Filled ball

250 fball#=CHR#(231)+CHR% (232) +CHR#%
(1@) +CHR# (8) +CHR#¥ (8) +CHR# (233) +CHR# (2
34)

268 REM Fairy

2780 fairy#=CHR# (18)+CHR# (@) +CHR#¥ (1)
+CHR# (235) +CHR# (236) +CHR$ (237) +CHR#% (1
@) +CHR# (8) +CHR# (8) +CHR# (8) +CHR#¥ (238) +
CHR# (239) +CHR# (24@) +CHR$ (1@) +CHR$ (8) +
CHR# (8) +CHR# (8) +CHR# (241) +CHR# (242) +C
HR# (243)

280 REM Fairy with wings

2980 wfairy#=CHR#(18)+CHR#% (@) +CHR% (2
) +CHR# (244) +CHR# (245) +CHR# (246) +CHR# (
1@) +CHR# (8) +CHR# (8) +CHR#% (8) +CHR* (247)
+CHR# (248) +CHR¥ (249) +CHR¥ (10) +CHR# (8)
+CHR# (8) +CHR# (8) +CHR# (250) +CHR#¥ (251) +
CHR# (252)

3@8@ ENDFROC

318 REM == = = = ==

3280 DEF PROCtriangles

338 GCaLa,s

348 FOR counterZ=1 TO 3

35@ READ top%Z,offseti,bottomZ%

3460 MOVE centre’Z,topZ:MOVEcentre’Z-o
ffseti,bottom%

378 PLOT 85,centreZ+offseti,bottomi

388 NEXT counterZ

398 ENDPROC
420 REM == == =

41® DEF PROCbase
420 GCOLG,1
438 READ offsetZ,heighti%

59

430

MOVE centreZ+offsetZ,?246:MOVE ce

ntreZ—offset’,?4

60

4580
460
47@
480

490
S0a
510
520
530
540
bkt
568
578
580

S99
&20
618
628
6308
648
650
660
&78
&80
698
700

718
720
738
74@
758
760
778
78@
79@
800
810
820
830

PLOT 85,centreiZt+offseti,heighti
PLOT 85,centre’/—offseti,heightZ
ENDFPROC

REM === =

DEF FROCcandles

VDU S

FOR counter%=1 TO é

READ »xposiZ,yposi

MOVE xposiZ,ypos’

PRINT candle#%

NEXT counter%“

vDu4

ENDFROC

REM == = === = ==

DEF PROCballs

vDU 5

FOR counter%=1 TO &

READ xposi,yposi,outer’Z,inner’
GCOLB,innerZ:MOVE xposZ%Z,yposi
PRINT fball#

GCOLB,outerZ: MOVE xpos%,yposi
PRINT uball#

NEXT

vDu 4

ENDFROC

REM T S R S ==

DEF PROCfairy

MOVE 596,1000

VDU 5

PRINT wfairy#

MOVE 5946, 1000

PRINT fairy#

VDU 4

ENDFROC

REM ========== e mm====
DEF PROCmessage

VDU 5

GCoL\e, 2

FOR counterZZ=0 TO 1&6STEP 4

84@ MOVE 64-counter’,é68-counter’%

850 PRINT "MERRY CHRISTMAS AND A HA
PPY NEW YEAR"

860 NEXT counter’

87@ MOVE 64-counter%,&68-counter’

880 GCOLO,1

890 PRINT "MERRY CHRISTMAS AND A HA
PPY NEW YEAR"

0@ VDU4

21@ ENDFPROC

920 REM =

930 REM Candle

?4@ DATA 23,224,16,56,56,124,124 ,56
2 16,56,23,225,56,56,56,56,56,56,56,56

5@ DATA 23,226,16,56,56,124,124,56
y16,08,23,255,16,56,56,124,124 ,56,0,0

960 REM Unfilled Ball

278 DATA 23,227,1,1,14,56,32,64,128
,128,23,228,128,1268,112,28,4,2,1,1,23
$229,128,128,64,64,32,24,7,0,23,230,1
v 1,3,2,4,24,224,0

9880 REM Filled Ball

798 DATA 23,231,1,1,15,63,63,127,25
5,255,23,232,128,128,240,252,252,254,
255,255,23,233,255,255,127,127,63,31,
7,8,23,234,255,255,255,254,252,248,22
4,0

100@ REM Fairy

121@ DATA 23,235,0,0,0,0,0,0,0,0,23,
236,0,0,0,56,124,124,124,56,23,237,0,
2,0,0,0,0,0,0,23,238,0,0,1,3,7,0,0,0,
23,239,124 ,254,255,125,125,124 ,254 ,25
4

1220 DATA 23,240,0,0,0,128,192,0,0,0
y23,241,1,1,3,3,7,0,0,8,23,242,255,25
5,255,255,255,0,0,0,23,243,0,0,128,12
8,192,0,0,0@

1830 REM Fairy plus Wings

124@ DATA 23,244,0,32,48,56,60,60,62
163,23,245,0,0,0,56,124,124,124,57,23
,246,0,8,24,56,120,120,248,248,23,247
1 63,63,63,63,63,63,62,60

1@5@ DATA 23,248,255,255,255,255,255

61

,255,254,126,23,249,248,248,248,248,2
48,248,248,120,23,258,61 ,57,51,35,7,0@
,8,0,23,251,255,255,255,255,255,0,0,0
s 23,252,120,56,152,1346,192,0,0,0

126@ DATA -1

1378 REM Triangles Data

1288 DATA 958,175,775,850,300,558,67
5,400,300

129@ REM Base Data

1180@ DATA S@,296

111@ REM Candle Positions

1120 DATA 4468,871,8@5,871,335,646,93
2,5646,235,396,1030,396

117@ REM Ball Positions

1140 DATA 400,400,2,1,800,450,1,2,70
a,650,0,1,600,500,1,0,450,625,0,2,575
,7980,2,0

Program VIII illustrates this technique. What it does is to print out ‘A
WORD’ in yellow several times, each time moving it down four graphic units
to the left and down (line 60). This is because, each time through the loop, the
number we reduce the X and Y coordinates by, 1%, is increased by 4. The
reason we move four graphic units at a time is because this is the minimum
resolution in Mode 1.

When you exit a loop the loop variable is still incremented before the check
to see if the loop should be terminated is made. So, when line 90 is reached. 1%
is four greater than when the loop last printed ‘A WORD’. Also the colour has
changed to red (line 100) so line 110 prints out ‘A WORD’ in red, one pixel
down and to the left of the last ‘A WORD".

Try to decipher Program VII —working through other people’s programs is
one of the best ways to improve your own programming.

1@ REM PROGRAM VIII
2@ MODE 1

30 GCOL 0,2

4@ VDU S5

S@ FOR 1%=@ TO 12 STEP 4
60 MOVE 544-1%,512-1%
7@ PRINT"A WORD"

8@ NEXT IZ%Z

9@ MOVE S544-1%,512-1%
18@ GCOL @a,1

11@ PRINT"A WORD"

12@ vDu4

62

Chapter 8: Combining Colours Logically

SO far we have used GCOLO to choose our graphics colours. In fact, we’ve
treated GCOL as if it always had a 0 after it. This isn’t always so — we can
follow GCOL directly with any numbers in the range O to 4. When we use
GCOLO, the colour specified by the following logical colour number is
“forcibly painted” onto the micro’s screen, completely overpainting whatever
was below.

However the other options, such as GCOL1, while still allowing you to
specify a logical colour number, blend that colour with the colour already on
the screen at the position you're plotting. The micro doesn’t work on the old
“blue + yellow = green” rule we learnt at school. Instead, the colour the
computer “mixes”” depends on how the two logical colour numbers involved
(the one already on the screen, and that specified in the GCOL) combine
logically.

The various GCOL options either OR, AND, EOR or NOT the numbers
involved. GCOLI1 specifies OR, GCOL2 specifies AND, GCOL3 specifies
EOR and GCOL4 quite simply NOTs, or inverts, the colour at present on the
screen, the logical colours you specify after the comma being a dummy. Try
Program 1.

1@ REM FROGRAM I

2@ MODE S

3@ vbu 19,3,4,0,0,0

4@ GCOLB,1

5@ PROCbox (200)

6@ AF=GET#

72 GCOL1,2

80 PROCbox (20@)

2@ END

18@ DEF PROCbox (offset?)
11@ MOVE 888+offset’,200
120 MOVE offset’Z,200

13@ FPLOT 85,8@00+offset’,800
14@ PLOT 85,o0ffset’,B00
158 ENDPROC

Line 30 simply changes logical colour 3 to blue. Line 40 selects logical
colour 1, in this case red, as foreground, while line 50 prints a red rectangle.

63

Line 60 holds the program until you press a key, then line 70 selects a new
logical colour to reprint the box in.

Now it may look as if you're redrawing the box in logical colour 2, but
notice you’re using GCOL1,2 not GCOLO0,2. The GCOL1 means that the
BBC Micro will logically OR the present foreground colour with 2, and use
the result as the foreground colour. As the previous logical colour number
was 1, 1 OR 2 gives 3, or, in the rather clearer binary, %01 OR %10 gives
%11. So the second time it is called PROCbox draws the rectangle with
logical colour 3, in this case blue.

You're probably wondering what all the fuss is about. It seems a
longwinded way of printing a blue rectangle. Why didn’t I just use a
GCOLO0,3 followed by PROCbox? Well the point is that by doing things
cleverly you can overprint one colour with another in such a way that the
micro “remembers” the colour that was there first! Try Program II.

1@ REM PROGRAM I1

2@ MODE 5

3@ VDU 19,3,4,0,0,0

4@ GCOL@,1

5@ PROCbox (@)

6@ GCOL1,2

7@ PROCbox (40@)

8@ END

9@ DEF PROCbox (of fset%)
100 MOVE 8@@+offsety,200
11@ MOVE offset’Z,200

12@ PLOT 85,800+0f fset%,800
130 PLOT 85,o0ffset%,800
14@ ENDPROC

Here we omit the pause before the second rectangle is drawn, and the two
rectangles, though overlapping, are offset from each other. Amazingly. three
rectangles appear on the screen. Figure I should help to make this clearer.

%01 %00
OR OR
%01 %10 %10
gives gives
%11 %10
(red) (blue) (yellow)

Figure I: The rectangles composing Program I

64

What happens is that the first rectangle is drawn normally in red (GCOLO,1).
The second rectangle is drawn with GCOL1,2. This ORs logical colour 2 with
the logical colour numbers underneath where it happens to be plotting.

In this case, the second rectangle is spread over two colours — the red of the
first rectangle (%01) and the black of the background (%00). This gives two
different rectangles since %01 OR %10 gives %11 (blue) and %00 OR %10
gives %10 (yellow).

1@ REM PROGRAM III

2@ MODE S

o vDU 19,3,1,0,0,08

40 GCOL1,1

S@ FROCbox (@)

6@ GCOoL1,2

7@ PROCbox (42@)

88 END

7@ DEF PROCbox (offset)
108 MOVE B@0+offseti,200
11@ MOVE offset’Z,200
120 PLOT 85,8@8+of fset’%,B800
13@ FLOT BS5,offset’,800
14®@ ENDFROC

Program III is a variant of Program II. What we’ve done here is to use line
30 to redefine logical colour 3 to be actual colour 1 (red). This means that
there are now two logical colour numbers for red (%01 and %11). Also we're
ORing the first rectangle onto the screen — line 40 uses a GCOLI,1. As it is
going on the background (%00) this doesn’t make any effective difference.
For the rest of this article we’re going to be ORing on rather than using
GCOLO.

If you’ve run Program III you’ll have noticed that we get two rectangles,
red and yellow. The red actually comprises the old red and blue rectangles
combined. This is because the old blue rectangle is in colour %11 since we’ve
ORed %01 with %10. As we’ve redefined that as red in line 30, the two
rectangles merge into one red rectangle (actually consisting of two logical
colour numbers).

One way to think about this arrangement is to imagine that the colour red is
somehow “in front™ of the colour yellow, so our original red rectangle blocks
out or obscures the yellow rectangle where they overlap. You can consider the
red to be the “foreground colour” and the yellow a “midground colour”.
(We've already got a background.) When you think like this, it’s natural that
the foreground should obscure the midground in this way.

When we think of logical colours as belonging to fore-, mid- and

65

background we say we are dealing with “multi-plane images”. Think of each
colour as being drawn on separate screens, or planes, one on top of the other.
The one on top is the foreground colour, which will then obscure the mid- and
background colours underneath.

In Program III the red is drawn in the first plane and the yellow in the
second, so the red overlaps the yellow — any yellow painted on the midplane
“under” a red area will not show. So by using this system of ORing colours
onto the screen, we can deal with overlapping images.

There’s more to this than meets the eye. When you OR a foreground onto a
midground colour the micro “remembers” that there was a midground colour
there. So if the foreground “moves off”” the midground colour shows through.
You see when you OR logical colour 2 with logical colour 1. the result is
logical colour 3 which, with a cunning VDU 19, we arranged to be the
foreground colour.

The situation is easier to follow in binary: %01 and %11 are both the
foreground colour. Notice that bit zero is set — that is, equal to one — when we
are talking about a foreground colour. The other two colour numbers in a four
colour mode, %00 and %10, which do not have this bit set. are the back- and
midground colours respectively.

Now we are ORing the colours onto the graphics screen. So, the fact that
bit one is set in %11 must mean that originally there was some yellow
“underneath”. After all, if you're just ORing the three logical colours %00.
9%01 and %10 how else can bit one be set without having %10 in on the deal?
(We never use %11 when ORing onto the screen since we already have %01
to do the job — they’re the same colour.)

So we can consider bit zero to be the “foreground bit”” and bit one to be the
“midground bit”. If either bit is set on its own, the respective colour is shown.
If both are set the foreground takes precedence. but the computer remembers
(by keeping bit one set) that there was yellow there.

To recap, in the last program bit zero set shows that there’s some red in the
shape, and you're always bound to see it because it’s foreground. Bit one set
means that there is yellow in the shape — even if you can’t see it because it’s
obscured by a foreground colour. Figure II summarises this.

Now I hinted previously that the foreground colour could “move off™.
leaving the midground showing through (if there was anything there). Our
system can cope with this since it remembers when the foreground is
obscuring the background.

You see by using another GCOL statement you can “turn off” or ““clear to
zero™ the foreground colour bit in the logical colour number. After all. if you
change %11 to %10, you’ll be left with something in the midground colour.
We can “clear” bits like this with the AND statement. We just AND the
number we're working on with another binary number consisting of 1s in the
bits we want to preserve, and Os in the bits we wish to clear. So, to clear the
foreground bit we want to AND the logical colour number with %10.

To show how this works consider the case of a foreground colour

66

Logical colour number
Interpretation
Binary Decimal
00 0 Background
01 1 Simple foreground
10 2 Simple midground
11 3 Foreground obscuring midground

Figure II: Multiplane images in a four colour mode

obscuring a background colour. As we’ve seen, the logical colour number for
this is %11. Now %11 AND %10 gives %10 — that is, we've cleared the
foreground bit leaving only the midground.

If there were no midground present — that is, if we had just a simple
foreground (%01) — then %01 AND %10 gives %00, leaving just the
background. So we can “turn off” the foreground by ANDing it with %10.
GCOL2 allows us to do this sort of ANDing of logical colour numbers. It
ANDs the logical colour number following it with that on the screen.

1@ REM PROGRAM IV

280 MODE 5

38 vbuU 19,3,1,0,0,0

4@ GCOL1,1

5@ FROCbox (@)

68 AF=GET#

78 GCOL1,2

8@ PROCbox (40@)

0 AF=GET#
10@ GCOL2,2
11@ PROCbox (@)
128 END
13@ DEF PROCbox (offseti)
14@ MOVE B0@+offset’,200
15@ MOVE offset’Z,200
160 PLOT 85,8@8+offset’,800
178 PLOT 85,o0ffset’Z,B800
18@ ENDFROC

67

Program IV is identical to Program III in that it draws a red foreground
rectangle, partly obscuring a yellow midground rectangle. However in lines
100 and 110 we AND the foreground rectangle with %10, clearing the
foreground bit. This effectively “unprints” the foreground rectangle, revealing
the part of the midground rectangle previously obscured. (If you remember,
the obscured part was in logical colour %11, so ANDing with %10 leaves you
with %10, the midground colour.)

Similarly, we can clear the midground colour. This time we AND the
logical colour number with %01, the zero “killing” the required bit. To
demonstrate this, add these lines to Program IV:

i@l GCOoL 2,1
11@ FROCbox (408@)

These changes ensure that we are ANDing the second rectangle with %01.
When you run it the second rectangle disappears. Actually, the whole of the
yellow midground rectangle goes — even though you can’t see it behind the red
foreground. Also, the red foreground that previously overlapped the yellow is
now totally in logical colour %01. Before it was %11 —now we've ANDed it
with %01 to give %01.

So, as our scheme has developed, we OR to put shapes on the screen, AND
to take shapes off the screen. Although we have restricted ourselves to a four
colour mode, this has given us three effective colours (one of which has two

Figure III: Logical colours in Program IV

68

logical colour numbers), and the power to overlap and recover shapes.
Finally. we can use the ability to OR shapes to display two overlapping
shapes separately and instantly on the same screen without overlapping them.
Program V shows how. As Figure III demonstrates. we simply OR the
rectangle onto the triangle. To display the triangle, we use VDU 19 statements
to turn colours 2 and 3 “on” in the triangle colour, and to make colour 1 the

1@ REM FPROGRAM V
2@ MODE S
32 vDbuU 19,3,1,0,0,0
4@ GCOL1,2:PROCtriangle(20@): PROCw
ait
5@ GCOL1,1:PROCbox (20@) : FRDCwait
68 REFEAT
7@ PROCdisplay_triangle:PROCwait
80 FROCdisplay_box:FROCwait
@ UNTILFALSE
1@@ DEF PROCbox (offseti)
11@ MOVE B@@+offset’,Z20@
12@ MOVE offseti,200
138 FLOT B5,B0B8+offset’, 600
14@ PLOT 85,o0ffset’,600
158 ENDPROC
16@ DEF PROCtriangle{offseti)
17® MOVE B8@@+offset’i,208
180 MOVE offseti,Z200
198 FPLOT 85,4@88+offset’, 1000
280 ENDPROC
21®@ DEF PROCdisplay_box
220 Vvbui19,1,1,0,0,0
238 vDul19,2,0,0,0,0
24@ VvDU19,3,1,0,0,0
258 ENDFROC
260 DEF PROCdisplay_triangle
278 vpule,1,1,0,0,0
280 vDU19,2,0,0,0,0
298 vDU19,3,1,0,0,0
I8 ENDFROC
Z1@ DEF PROCwait
I20 FOR loopZ= @ TO 2008
238 NEXT loop«
34@ ENDPROC

69

background colour (PROCdisplay_triangle). Similarly, to display the

rectangle, we turn 3 and
(PROCdisplay_rectangle).

70

13

on

LX)

and set 2 to background

Chapter 9: Using Exclusive OR and Invert

WE’'LL go straight onto GCOL3 and GCOL4, two commands that many
find baffling. To understand them properly we need to put them in the context
of GCOLO, GCOL1 and GCOL2. Enter Program I. This has one procedure,
PROCtriangle. We use it in a REPEAT ... UNTIL loop (lines 30-70) to
draw a triangle on the screen, as its name suggests. Line 60 serves to prevent
the loop being repeated until you press a key, and line 40 chooses the GCOL
option you draw the rectangle with.

If you’ve run the program you’ll have found that repeating the loop doesn’t
seem to have any effect. This shouldn’t surprise you — after all, with
GCOLO,1 you are simply drawing the triangle in white on a black

1@ REM FROGRAM I

2@ MODE 4

Z@ REPEAT

4@ GCOL\,1

5@ PROCtriangle(®d, @, 1279, 1823)

60 delay$=GET#

7@ UNTIL FALSE

80 DEF FROCtriangle(x%Z, vy%Z, baseZ%
s height#)

?@ MOVE x%Z, y% :MOVE x%+base’l, vy%

10@ FLOT 85, x%i+baseXl/2, yit+heightX

11®@ ENDPROC

background, and in a fixed position. Repeating this will cause no visible
change. Of course we could use other GCOL options. For instance,
GCOL2,1 will AND logical foreground colour one onto the screen. To see
this, replace line 40 with:
4@ GCOL2, 1

and run the program. Nothing appears on the screen no matter how many
times you press the key. When you think about it, this is correct. You are
drawing the triangle, but as you are ANDing logical colour one onto
background colour zero, you in fact plot colour zero since I AND 0 = 0. The
next time through the loop you are again ANDing 1 onto O and so on.. ..

71

Another option is to use GCOL1,0 to OR our graphics onto the screen.

Change line 40 to:

402 GCOL1, 1
and run it. The triangle’s back. This is because we are ORing colour one onto
background zero, which gives us colour one since 1 OR 0 = 1. The next time
through the loop we then OR colour one onto the colour one that is already
there. Since 1 OR 1 = 1, the triangle is unchanged, and so on.

There are other GCOL options, however, that we have not covered. For
example, with GCOL3 we can EOR graphics onto the screen. Replace line 40
with:

4@ GCOL3, 1
and run the program. The triangle appears. However pressing the key causes
the triangle to disappear. Press once more and it reappears. Press again, it’s
gone and so on.

Initially you EOR colour one onto background zero. This plots the triangle
in colour one, since 1 EOR 0 is 1. The next time through the loop you EOR a
triangle in colour one onto the triangle that is already there, also in colour one.
These two now cancel each other out, since 1 EOR 1 = 0. Thus the triangle
disappears, being in the background colour. Once more through the loop and
you are EORing a triangle in colour one onto the triangle already present in
colour zero. The triangle reappears, since 1 EOR 0 = 1. I think you can see
how it continues. ..

There’s another option we haven’t tried — GCOLA4. Use this version of line
40 in Program I:

40 GCOL4, 1

Here the 4 following the GCOL causes the micro to invert whatever colour
is on the screen at the points drawn, or to use the proper terminology, plotted.
To work out the inverse of a logical colour number simply subtract that
number from the highest logical colour number available in that mode.
Remembering that for a four colour mode the maximum is 3, not 4 — that is,
one less than the number of colours available. In other words, to find the
inverse of logical colour number x, in a two colour mode the inverse is 1—x, in
a four colour mode the inverse is 3—x, and in a 16 colour mode the inverse is
15—x.

Referring to our latest version of Program I, we’re in a two colour mode.
When we clear the screen our background colour is zero, so since we're
inverting with GCOL4 the colour in which our triangle appearsinis 1 —0 = 0.
However when we press the space bar and plot it again the screen under the
new triangle being plotted is in logical colour one, the colour of the previous
triangle.

Now with GCOLA4 it’s the colour under the plotting that’s important. Since
it’s in colour one we invert it, giving us a triangle drawnin 1 — 1 = 0. As our
background’s already zero the triangle disappears. The next time we draw it,
however, we’re plotting our new triangle onto an area that is all colour zero.
As the inverse is 1 — 0 = 1, the triangle reappears.

72

Don’t let the last two variants of Program I convince you that GCOL3 and
GCOLA4 are the same thing — they’re not, although they often seem uncannily
alike. Try Program II. This is another variant on Program I. All that’s
different is that it’s in Mode 5, a four colour mode.

1® REM FROGRAM I1I

28 MODE S

Z@ REFEAT

4@ GCOL3,1

S8 FROCtriangle(d, @, 1279, 1823)

68 delay$=GET#

7@ UNTIL FALSE

80 DEF FPROCtriangle(x%Z, y%Z, base’
s height’)

?@ MOVE x%Z, y% :MOVE x%+base’Z, vy%Z

188 PLOT 85, x%+tbasei/2, yZ+heightX’

11@ ENDPROC

This time the triangle appears in red since 0 EOR 1 = 1, and in this mode
logical colour one is red (assuming there’s been no “VDU19ing”). The next
time through it disappears, and so on as before. If you now change line 40 to:

4@ GCOL4, 1
the triangle is white when it appears. This is because it is plotting onto logical
colour zero, the inverse of which, as we’re in a four colour mode, is 3 -0 =
3, which in Mode 5 is initially white. When we replot next time round the
triangle goes since we’re plotting onto an area of logical colour three, the
inverse of which is zero (3 — 3 = 0). Round the loop once more, of course, and
it’s back.

Try adding the line:

25 6COLle, 13@ : CLG
to give a yellow background. Can you see what’s going on? Two clues:
2EOR1=3
3-2=1

The point is that GCOL3 and GCOL4 aren’t identical. They are similar
though in this respect — do each of them twice and you’re back to the
beginning. Just as in a double negative the two negatives cancel each other
out, so if you EOR a number with another number twice, or invert a number
twice, you get back to the original number. That’s why the triangles kept
coming and going.

Let’s look at EOR first. If we have 3 and we EOR it with 2 we get: 3 EOR 2
= 1. If we EOR the result with 2 yet again we obtain: 1 EOR 2 = 3 and our
number — or colour — is back. It always works this way.

73

It might be easier to see in binary:
%11
EOR %10
%01
EOR %10
%11
Let’s now have a look at inverting in a four colour mode. Choose the
number 2. Now the inverse of 2 is 3 — 2 = 1. And if we then invert our answer
(1) we obtain 3 — 1 = 2, the number we started with.
We can use these techniques to give us a sneaky sort of animation.
Suppose we want to move a man across a background. We simply print
him in the first position using GCOL3, or GCOLA4. To then wipe him out, we
simply print him again in the same place, since EORing or inverting twice
restores the status quo. We then MOVE onto another position. We are, of
course, under the influence of VDU 35, printing at the graphics cursor.

13 REM FROGRAM III
2@ MODE S
38 vDU 23,240,28,28.8,127,8,20,34,

42 VDU S

5@ GCOL 3.1

6@ GCOL @,129: CLG

7@ REPEAT

80 FOR move¥%= 64 TO 1216 STEF 32
9@ MOVE maveZ,512

100 VDU 240

11@ FOR waitZ=0 TO S@@: NEXT waitZ%
12@ MOVE moveZ.,S512

13@ VDU 240

14@ NEXT moveZ

15@ UNTIL @

Program III does this in Mode 5. Line 30 defines character 240 to be a little
man, line 40 does the required VDU 35, line 50 causes us to PLOT in colour
one under EOR and line 60 ensures a red background. The animation is done
by lines 80-140, a FOR ... NEXT loop. The REPEAT ... UNTIL loop of
lines 70, 150 simply keeps the animation cycling across the screen.

move% determines the X coordinate to print the man at. It increases each
time through the loop. Firstly — lines 90,100 — the loop prints the man at
(move% ,512). It then pauses so you can see him (line 110). Finally lines 120,
130 print him again at the same position. Remember, though, that he has been
EOR’d on. So the second printing on the same spot undoes the first and he

74

disappears, ready to move on to a different position next time round the loop.
To show how vital this second printing is try leaving out line 130.
Now change line 50 to:
5@ GCOoL4, 1

so that we are inverting onto the screen. This time when you run it you see
much the same thing happening, although the man will have changed colour.
Do the sums and you’ll see why. Also try using GCOL4 with numbers other
than 1 —say 0, 2 and 3. As you’ll see, there’s no effect. This is because the
second figure is used in GCOL to specify the current foreground colour.
However with GCOL4 the only colour taken into account is that being
plotted onto, so the second figure is irrelevant. Don’t leave it out though. The
machine expects it, even if it is a dummy!

One subject beloved of graphics programmers is curve-stitching.
Personally, after the first dozen or so programs, I find them as boring as the
real thing . . . Still, they do tend to illustrate the uses of GCOL well, so I make
no excuse for Program IV.

1@ REM PROGRAM IV

20 MODE 1

30 VDU 23:8202:0:0:;0;
4@ FOR offset’Z=0 TO 1824 STEP 14
S8 GCOL3I.RND(3)

&8 MOVE offset’,@

7@ DRAW B, offset™

80 DRAW offset”%,1823
28 DRAW 10323, offset?
100 DRAW offset™,@

11@ NEXT offsetZ

120 waltF=GET#

fe—— 102§ ———™

|
|
|
|
|
[
I
|
I
|

offset% offset%

f . e e o

offset%
Figure I: Curve-stitch quadrilateral

75

All I'm doing is repeatedly drawing a quadrilateral of the type shown in
Figure I, offset increasing from 0 in steps of 16 (lines 40, 110). Line 50 is the
Crux:

58 GCOL3, RND(3)

Here we are EORing random colours onto the screen, giving us rather
attractive effects. As an experiment, see what would happen if you used
GCOLA4 instead as in:

5@ GCOL4, RND(3)

Is that what you expected? Finally, try GCOLO, 1 and 2 in line 50. Can you

predict the results beforehand?

76

Chapter 10: Rubber Banding Revealed

REMEMBER how GCOL3 and GCOL4 work: GCOL3 Exclusive ORs
(EOR) the foreground colour specified with that already on the screen, while
GCOL4 simply inverts the colour that is already there. In different
circumstances they will have different effects, but there is one property they
have in common — when under the influence of either, if you perform the same
DRAW or PLOT twice, the second time cancels out the first.

In practice we tend to use this property to erase lines in drawing programs —
computer aided design (CAD), as the jargon has it. We simply draw the line
we want with, say, GCOL3,1 and if it’s not what we desire we rub it out by
drawing exactly the same line still with GCOL3,1.

1@ REM PROGRAM I

2@ MODE 4

3@ GCOL\..1

4@ MOVE 1000. @ :MOVE 200, ©
5@ PLOT 85, 100G, 1000

60 FLOT 85, 200, 1000

7@ REPEAT

8@ FOR heightZ = 1 T0 4

?@ GCOL3,1

100 MOVE @, 20@ * height%
11@ DRAW 1279, 20@ * heightZ
120 NEXT heightZ

130 waitF=GET#

14@ UNTIL O

Program I illustrates the idea. It simply draws a large rectangle (lines 40 to
60) and then rules four lines across it, using GCOL3,1 — that is it EORs
logical colour one onto the rectangle (lines 80 to 120). Now these lines arein a
REPEAT ... UNTIL loop (lines 70 to 140) but after initially drawing the
lines the loop is prevented by the GETS in line 130 from being repeated until a
key is pressed. When the lines are first drawn they are in logical colour
number zero (1 EOR 1 = 0) where they cross the rectangle, so it appears to
have been cut into pieces.

Having pressed a key though the lines are once more drawn across the
rectangle. This time the segments that cross the rectangle are being EORed

77

onto colour zero — the result of the last “drawing”. So now the parts of the
lines across the rectangle appear in logical colour one, since | EOR 0= 1. The
effect of this is to give us a whole rectangle. Next time round we are once more
EORing logical colour one onto itself, and we regain our divided rectangle. I
think you’ll be able to predict without too much difficulty the effect of
changing line 90 to:

?0 GCOL4, 1

However bear in mind that GCOL3 and GCOL4 are not identical. To
illustrate this, try Program II:

1@ REM FROGRAM I1

2@ MODE S

30 GCOL@,1

4@ MOVE 1008, @ :MOVE 208. @
5@ PLOT 85, 1008, 1000

6@ PLOT 85, 2080, 1000

7@ REFEAT

80 FOR heightZ = 1 TO 4

9@ GCOL3, (height%-1)

100 MOVE @, 200 * height%
11@ DRAW 1279, 20@ * heightX
120 NEXT height%
130 wait*=GET#
14@ UNTIL @

See if you can predict the outcome before you run it. It’s virtually identical
to Program I, save that we’re in Mode 5 (line 20). We take advantage of the
change in mode by varying the colours of our line. The formula height%—1 in
line 90 ensures that the colours of the lines EORed onto the screen are logical
colour numbers 0, 1, 2 then 3.

Can you visualise what happens? Suppose we change line 90 to:

980 GCOL4, (heightZ - 1)

Can you guess what would happen now? Try it and see. The main point is
that GCOL3 and GCOLA4 are different in their effects. If anything, GCOL3
gives you the more control, since you can “mix” the colour you specify with
the colour already there. Whereas with GCOL4 you are simply inverting the
colour already on the screen.

A good application of the ability of these two GCOL statements to

78

“self-erase” is when you have a pointer rotating around a dial. Look at
Program III:

1@ REM FROGRAM II1

2@ MODE 4

30 radiusZ=400

48 VDU 29,640;512;

58 MOVE radius’%.0

&8 FOR angle = @ TO 346@ STEF 10

780 DRAW radius%Z*C0OS(RAD(anqle)) ,ra
diusZ#*SIN(RAD (angle})

8@ NEXT

0 angle=0

1200 GCOL3.1

11@ REFPEAT

1280 IF angle < 358 THEN angle=anqgle
+1@ ELSE angle=0

132 MOVE ©0.0

1490 DRAW radius’%Z*COS(RAD(angle)) ,ra
dius%Z*SIN(RAD (angle))

15@ FOR wait’Z=0 TO 400 :NEXT

160 MOVE @,0

170 DRAW radius%Z*COS(RAD(angle)) ,ra
diusZ#*SIN(RAD {angle))

18@ UNTIL @

If when you’re entering it you initially end with line 80 and run the program.
you’ll see that the first few lines simply draw a circle. Go through it carefully
until you can see how it works. Briefly, it draws a 36 sided polygon — which is
close enough to a circle for our purposes. The method is fully explained in
Chapter Six. Line 40 moves the graphics origin to the centre of the screen.

If you now type in the rest of the program and run it you see that a pointer
appears, rotating anti-clockwise like the hands of an indisciplined clock. What
we're doing is drawing a radius from the centre of the circle to the
circumference (lines 130 to 140). We then wait for a while with a dummy loop
(line 150). so we can see the line.

Next we redraw it from the centre to the circumference — but as we’re under
GCOL3 (line 100) this simply unplots our previous line. Now this whole
draw, undraw routine is in a REPEAT ... UNTIL loop (lines 110 to 180).
However each time through the loop line 120 intervenes to increase angle —
that is, how far round the “face” the arm is — by 10 degrees. Once we've
plotted for 350 degrees though, we restore angle to O degrees, since O degrees

79

is the same as 360 degrees, where our next increment of 10 degrees would take
us (still line 120). After all, getting back to where we started is the whole point
of going round in circles! Again, try it with GCOL4 in place of GCOL3.

One of the nice things about this type of plotting is that we can use the
techniques to pass over “background” objects and leave them totally un-
changed. To see this, add the following line to Program III:

85 MOVE 5@, -1@00: MOVE 5@, 10@: PLOT
85, 200, -100

These techniques are ideal for the scanners of your intergalactic battle
cruiser, aren’t they? As a challenge, why not tinker with the above to turn the
program into a clock?

One of the most useful applications of these techniques is in “rubber
banding”. This is just a way of drawing lines on your screen that allows you to
“slide and stretch” them back and forth until you get them to fit exactly where
you want.

Program IV draws a line from the centre of the screen to a cross-shaped
cursor defined in line 30. Now you can shift this cursor about the screen by
using the cursor keys. The *FX4,1 of line 80 allows them to return Ascii
values.

The position of the cursor is determined by newx and newy. As you can see,
lines 290 to 320 of PROCinput vary their values depending on the key
pressed (line 250). PROCinput is in a REPEAT ... UNTIL loop so let’s see
what happens. Remembering we’re using GCOL3 (line 100). Line 240 draws
the cursor. The —8 and + 16 offsets are to ensure that the centre of the cross is at
newx, newy. That is, newx—8, newy+16 are the top left coordinates of the
user-defined character printed by that line’s VDU 244 (notice we’re under
VDU 5 —line 90). Line 250 then waits for a key to be pressed. Once it has been
pressed line 260 reprints the cross in the same position — but because of the
GCOL3 it disappears, ready for us to move it in accordance with the cursor
key that’s been “got”. PROCline of 270 simply draws a line from oldx, oldy —
which in this program never vary from the centre of the screen — to newx,
newy.

This may seem a bit odd, since we’ve not taken into account the cursor’s
“move”, but in practise this will be the deleting line, going over a line we've
already drawn. At the beginning, oldx, oldy and newx, newy coincide, so in
effect no line is drawn. Lines 290 to 320 calculate the cursor’s new position
and ensure it doesn’t go off screen. The PROCline of 330 then draws the line
from the centre of the screen to the circle. The next time through the
procedure, after the key press, line 270 redraws — and hence wipes out — the
last line. After the adjustments of 290-320, line 330 draws the new line.

The effect has to be seen to be appreciated. As you direct the cursor round

80

1@ REM FROGRAM 1V
28 MODE @
I0 VDU 23.224,24,24,24,255,255,24,
24,24
4@ 0ldx=4640: o0ldy=512
S0 newx=4640: newy=512
60 MOVE oldx.oldy
78 fix=FALSE
80 #FX4,1
2@ VDU S
188 GCOL3,1
118 REPEAT
128 PROCinput
178 UNTIL fix
140 *FX4.0
15@ vDu4
168 END
170 REM =====mmcomocs—sroasm—sos======
18@ DEF PROCline
1@ MOVE oldx.oldy
200 DRAW new: ,newy
218 ENDFROC
2280 REM == ==E===s==s=======
23Z@ DEF PROCinput
248 MOVE newx—8,newy+16:VDU 224
2580 key=GET
268 MOVE newx—-8.newy+146:VDU 224
278 PROCline
2880 IF key=1353 THEN fix=TRUE
298 IF kev=136 THEN IF new:>13 THEN
newx=newx—146
308 IF key=137 THEN IF newx<12&63 TH
EN newx=newx+16
318 IF key=138 THEN IF newy>15 THEN
newy=newyvy—14&
320 IF kev=139 THEN IF newy<1087 TH
EN newy=newy+1lé
3380 PROCline
348 ENDFPROC

the screen a seemingly elastic line constantly joins it to the centre — hence the
term “rubber banding”. If we should wish to freeze our line in one position we
just press the Copy key. Line 280 then sets the logical variable fix to TRUE,

81

which causes us to drop out of the REPEAT ... UNTIL (line 130).

You may be wondering what happens if you press other keys — after all
PROCinput doesn’t test for the legality of keys. If you look carefully you'll see
that all that happens is that 270 erases the line and then 330 draws it back in
the same place. Lines 140 and 150 simply restore the cursor keys and cursor
movement to the status quo ante program.

There’s far more potential than this though. Suppose that when we’d fixed
our line we then started a new line from the last position of the cursor. Then
when we’d fixed that we could start a new line from the end of that and so on
... we'd have a computer etch-a-sketch! It’s not all that difficult. Program V
has what’s needed:

10
20
@
24,24
40
5@
f=1"]
70
80
k4]
120
185
110
120
130
135
136
137
140
15@
160
170
180
190
200
210
220
230
240
250
260
27@a

82

REM PROGRAM V
MODE @
vDU 23.224,24,24,24,255,255,24,

0ldx=640: oldy=512

newx=640: newy=512

MOVE oldx.oldy

fix=FALSE: end =FALSE

#*FX4,1

VDU S

GCOL3,1

REPEAT

REPEAT

FROCinput

UNTIL fix OR end

GCOL@A,1: PROCline: GCOL3,1
oldx=newx: oldy=newy: fix=FALSE
UNTIL end

#*FX4,0

vDhu4

END

RE =m===== = =
DEF PROCline

MOVE oldx,oldy

DRAW newx ,newy

ENDPROC

REM ======= E=msmsms ===m=
DEF PROCinput

MOVE newx—-8.newy+16:VDU 224
key=GET

MOVE newx—8,newy+16:VDU 224
PROCline

280 IF key=135 THEN fix=TRUE

290 IF key=1346 THEN IF newx>15 THEN
newx=newx—154

300 IF kev=137 THEN IF newx<1263 TH
EN newx=newx+1é

3180 IF key=138 THEN IF newy>15 THEN
newy=newy—14

320 1IF kev=1392 THEN IF newy<1007 TH
EN newy=newy+1é

329 IF key=465 THEN end=TRUE

338 PROCline

Z4@ ENDPROC

It’s much the same as Program IV — the new lines have the new line
numbers. In essence we're repeating the main body of Program IV. Lines 105
and 137 form the new REPEAT ... UNTIL loop. This time we won’t want to
finish the program every time we fix a line, so we have another logical
variable, end.

If you compare Programs IV and V you see that the first difference between
them is in the UNTIL of line 130 which has the extra condition OR end
attached. Let’s suppose we've just started the program and have moved our
cursor to a position where we want to fix a line. So far everything has gone on
as in Program IV. Once we press Copy though we drop out of the inner
REPEAT ...UNTIL loop (lines 110 to 130). We then change to the
“standard” GCOLO to draw the line and then revert to GCOL3 (line 135).

Line 136 contains the clever bit. We then move the starting point of our new
line to the end of the line we've fixed by setting oldx equal to newx and oldy
equal to newy. Next time we’ll start rubber banding from the “free” end of the
last line. Notice also that we set fix to FALSE again. If we didn’t we’d just
keep dropping through the inner loop, never getting anywhere. Leave it out
and see! Line 137 tests to see if end is TRUE, dropping through to finish if so.
Line 325 in PROCinput tests for the ending condition — pressing A for
“abort™.

Even with this rudimentary program you can have a lot of fun, but there are
limitations. For instance, every line follows on from the end of the preceding
one. It would be much more convenient if we could turn off the line until we’d
moved the cursor into a new position. How else could we, for example, draw a
box within a box? And of course, no one’s perfect — we might want to delete a

line.

Program VI incorporates these refinements. To do so we’ve introduced two
new logical variables, /ine and delete. (Notice that the terminating conditions
for our inner loop — line 70 — now involve delete.) If line is TRUE, when the
cursor moves a line rubber bands to it. If it is false, the cursor moves with no

83

attached line. We use the Return key to toggle between the two states (line
460). Line 470 then either draws the line or sets the cursor coordinates to its
new position as appropriate. The actual drawing of a “fixed” line is done by
line 80.

You will probably have noticed that, when using these techniques, if you
draw a line exactly over another line they disappear. This is because of the
GCOLS3 effect of which we are taking advantage. As soon as you move the top
line off however, the line underneath reappears. If you really did want to erase
this line all you would have to do is press “D”, which then sets delete to TRUE
(line 450). You will then drop out of the inner loop and line 90 will draw the
line in the background colour — that is erase it — with GCOLO0.0. then restore
GCOL3.1. However you came out of the inner loop lines 100 to 110 move the
start coordinates to their new position and line 120 restores the logical
variables fix and delete to their default values.

The program, though short, is by no means a simple one. so persevere — the
ideas behind it are very important.

1@ REM PROGRAM VI

206 MODE @

3@ PROCinitialise

48 REPEAT

58 REPEAT

68 FROCinput

70 UNTIL fix OR end OR delete

80 IF fix AND line THEN GCOL®,1:FR
OCline:GCOL3.,1

280 IF delete THEN GCOL®,.@:FROCline
:GCOL3, 1

100 oldx=newx

118 oldy=newy

120 fix=FALSE:delete=FALSE

13@ UNTIL end

140 *FX4.0

158 vDhU 4

16@ END

170 REM ======= = == s

188 DEF PROCinitialise

1983 VDU 23.224,24,24,24,255,255,24,
24,24

200 end=FALSE: line=FALSE :fix=FALS
E :delete=FALSE

210 o0ldx=640:0ldy=512

220 newx=640:newy=512

84

270
240
250
268
270
280
29@
20
31@
320
3350
34@
358
3608
370
380
370
400

MOVE oldx.oldy
*FX4,1

vDU S

GCOL3,1
ENDFROC

DEF PROCline
MOVE oldx.,oldy
PLOT13, new:,newy
ENDFROC

REM ==========—=s===x===
DEF PROCinput

MOVE newx—8,newy+16: VDU
key=GET

MOVE newx—8,newy+146: VDU
IF line THEN PROCline
IF key=135 THENM fix=TRU
IF key=136 THEN IF newx

newx=newx—146

410

IF key=137 THEN IF newx

EN newx=newx+lé

420

IF key=138 THEN IF newy

newv=newy—16

30

IF kevy=139 THEN IF newy

EN newy=newy+1&

44@

IF key=65 THEN end=TRUE

224

224

E
>15 THEN

<1263 TH

>15 THEN

<1087 TH

450 IF kev=468 THEN delete=TRUE
4450 IF key=13 THEN line=NOT line

470

IF line THEN PROCline

x=newx:oldy=newy

480

ENDPROC

ELSE eald

85

Chapter 11: Teletext Tales

ONE of the most useful features of the BBC Micro is Mode 7, the teletext
mode. This is the one the micro enters automatically when you switch it on or
press the Break key. It’s unlike any of the other modes of the micro and is in
fact controlled by a special chip used only for teletext. Because of this, the way
it is used differs completely from the way we use the other graphics modes.

The beauty of Mode 7 is that it can be used to produce colourful, interesting
screen displays which don’t use up large chunks of precious memory. In fact,
you can get a whole screenful of teletext using just 1k of memory. This leaves
you some 30k to use for your program.

Having said that, the graphics you can have in Mode 7 aren’t all that
advanced. But if you look at the BBC’s Ceefax or ITV’s Oracle you'll see that
impressive displays can be produced.

As you’ll probably know, the Mode 7 screen consists of 25 lines from top to
bottom. Each can hold 40 characters across. Figure I shows the layout of the
screen: Notice that the first line is numbered 0, the last 24. It’s the same with
the character spaces, which are numbered from 0 to 39, not from 1 to 40 as
might be expected.

Normally when we use Mode 7 all we get is white text on a black
background. These are the default colours when we enter the mode. For

012 37 38 39
0
]
2 40 characters across
25 lines down
23
24

Figure I: Mode 7 screen dimensions

86

listings this is all right, but if we want to have a bit of colour in our Mode 7
displays, we have to tell the BBC Micro which colours we want. We do this by
using some beasties called control characters. These are special characters we
put on the screen to determine how the output appears for the rest of that line.

We print them on the screen just as we would the character “A” or “1”. The
difference is that after we’ve printed a control character we don’t see it. A shy
creature, it’s just there to control the colour of the text, not to be seen itself. To
print “Hello” on the screen we would normally use a line like: 10 PRINT
“Hello”. This would put the word up on screen in black and white. But
suppose we wanted it in red? What we would do is print a special control
character in front of the ““Hello™, telling the micro that whatever comes next in
that line is to appear in red. The control character that produces red is the
character with the number 129, so: 10 PRINT CHR$(129) “Hello” will print
the string “Hello” in red.

Figure II shows how the line is made up on screen. Notice that the control
code takes up a space even though you don’t see it. It blends in with the
background.

0 1 2 3 4 S
Control

character H I I

cha e (o)

Figure II: Printing using a control character

Seven colours are available in Mode 7, each one with its own control
character. Run Program I and you’ll see them in action: Colourful aren’t
they? The FOR ... NEXT loop has printed out a different control character
at the beginning of each line bringing about different coloured text each time.
These control character codes are shown in Figure III.

Remember that although we can’t see it, the control character at the
beginning of each line does take up one character space as demonstrated in

Number Colour
129 Red
130 Green
131 Yellow
132 Blue

133 Magenta
134 Cyan
135 White

Figure I11: Control codes

87

1@ REM FROGRAM I

2@ MODE 7

3@ FOR code = 129 TO 135

4@ PRINT CHR$ (code) "COLOUR CODE *
:code

5@ NEXT

Program II. This produces the same display as Program I with the added row
of numbers at the top. Notice that the character space 0 appears empty on

1@ REM FROGRAM II

2@ MODE 7

Z@ FRINT"@123456789"

4@ FOR code = 129 TO 135

5@ FRINT CHR# (code) "COLOUR CODE *
;s code

6@ NEXT

each line. It’s not actually empty, there’s an invisible control character there
which determines the colour for the rest of the line.

You can have more than one colour of text on a line as Program III shows.
If you look at line 30 you’ll see how this is done. First of all the control

1@ REM FPROGRAM III

2@ MODE 7

3@ PRINT CHR#(129) "FIRST RED" CHR
$(132) "THEN BLUE" CHR#(1Z8) "THEN GR
EEN"

character 129 is printed. We don’t see this, but it decides the colour of
whatever comes next in the line. Hence FIRST RED appears in red.

After this we print another control character, this time the one that
produces blue. This overrides the previous command to print in red and so
THEN BLUE appears in blue. Not content with having only two colours on
the line, there comes the control character for green and the last string appears
in green.

Thus we can have more than one colour on a line by using more than one

0 1 2 6 10 11 12 13 14 15 16 17

f.*;‘;,‘F I RrS]] TRTEIDS?:;,‘T HEN BIL
fU]E]ﬁ?:%?ITIHIEIN] G RIE EN|

Figure IV: Multicoloured line layout

88

control character in that line. Each control character’s influence lasts until
either the end of that line or until it meets another control character which
takes over command. You'll notice that each control character still takes up
one space, leaving gaps in the text. Figure IV shows what’s happened.

As I said earlier, the control characters only have influence to the end of the
line they appear on, or until another one takes over command. When you
finish one line and start printing on the next the text will be in the default
colour, white, unless you give the micro a different instruction by using
another control character.

1® REM FROGRAM IV

2@ MODE 7

3@ FPRINT CHR#{(131) "THIS WORES ON
ONE LINE"

4@ FRINT"BUT NOT ON THE NEXT"

Program IV shows this in action. The first line is in yellow because of the
control character 131. However, the influence of 131 only lasts until the end
of that particular line. When the program comes to print the next line it finds
no control character telling it what to do so it prints the text in white. If you
want yellow text in the second line you have to put in the appropriate control
code at the beginning as in program V.

1@ REM PROGRAM V

2@ MODE 7

3@ PRINT CHR$(131) "THIS WORKS ON
ONE LINE"

4@ PRINT CHR#(131)"AND ON THIS LIN
E, NOW"

But what about the background, must it always be black? No, the control
characters can be used to change the colour of the background. Program VI
shows how this is done. The secret lies in control character 157. This tells the
micro that the previous control character on that line (in this case control
character 130) is to be the background colour. So in line 30 the CHR$(130)
selects the colour green and the following CHR$(157) tells the computer that

1@ REM PROGRAM VI

280 MODE 7

3@ PRINT CHR#(13@) CHR#(157) CHR#(
129) "RED LETTERS ON A GREEN BACKGOUN
Dll

89

this is to be the background colour. Then CHR$(129) tells the micro that the
foreground colour is to be red and so we get the red letters on a green
background.

One thing to notice is that we have to set the foreground to a different
colour to the background after using a CHRS$(157). Otherwise the micro uses
the same foreground and background colours with unimpressive results. Try
leaving out the CHR$(129) in line 30 and you’ll see what I mean. As green
lines go, it’s very nice, but it doesn’t tell you much!

Run Program VI again and notice that we've now used three control
characters, each of which takes up one space. Program VII shows this. The
CHRS$(130) has taken up one space (and is invisible against the black

1@ REM FROGRAM VII

2@ MODE 7

25 PRINT"@12345678781234546789"

2@ FRINT CHR#(138@) CHR#(157) CHR#(
129) "RED LETTERS ON A GREEN BACKGOUN
Dll

background). The background now changes to green and the remaining two
colour codes take up two more spaces, this time matching the green
background. The result is that the red text doesn’t start until three spaces in
from the side. Things like this have to be kept in mind when you plan your
Mode 7 screen layouts.

The same control characters are used to get the background colours as are
used to get the foreground colours. The only difference is the following
CHRS$(157) which sets the background to the colour of the previous
foreground code. Program VIII shows the available background colours.

18 REM FPROGRAM VIII

2@ MODE 7

25 PRINT"@1234567890123454789"
3@ FOR code = 129 TO 135

4@ FRINT CHR#¥ (code) CHR$(157)
5@ NEXT

You might notice that there is no control character for black, the default
background colour. If we’ve changed background colour and want to revert
to black again all we have to do is use CHR$(156) which switches to the black
background again.

As you might guess from the above, we can change background colours in
mid-line just as we can the foreground text colours. Program IX shows this in
action. Line 30 does all the work. The first CHRS$(157) switches the
background colour to red, as determined by the preceding CHR$(129). The

90

next CHR$(157) in that line has the control character CHR$(131) in front of
it and hence the background is yellow. The control characters, although
invisibly blending with the background colours, still take up room, as
Program IX illustrates.

1@ REM PROGRAM IX

28 MODE 7

25 PRINT"@123456787012345678%81234
56789"

30 PRINTCHR#(129) CHR#{(157) CHR#(1
31) "ONE BACKGROUND" CHR#(131) CHR#(1
57) CHR#(132) "ANOTHER BACKGROUND"

So far we’ve covered the use of control characters to change both the
foreground and background colours. If you've seen any teletext displays at all
then you probably won’t be surprised to learn that there’s a control character
that will make the text flash. This is control character 136. If you put a
CHRS$(136) in a line then the text after it will flash, the foreground colour
alternating between itself and the background colour. Program X shows how

18 REM PROGRAM X

2@ MODE 7

25 PRINT"@123456789812345467890123
56789"

3B PRINT CHR#(136) CHR#%(129) CHR%(
157) CHR#(131) "ONE BACKGROUND" CHR#(
131) CHR#(157) CHR#(132) "ANOTHER EAC
KGROUND™"

it works. The effect can be turned off with a CHRS$(137). Program XI shows
both in action. Notice the amount of space used by the invisible control
characters.

1@ REM FROGRAM XI

2@ MODE 7

3@ PRINT CHR#(136) CHR$(129) CHR#(
157) CHR#$(131) "FLASHING" CHR#(137) C
HR$(131) CHR#(157) CHR#(132) "NON FLA
SHING"

As well as flashing text, another useful feature of Mode 7 teletext displays is
that of double height characters. Using the control character 141 makes all
the subsequent text in that line appear as double height. Program XII makes
use of this. Line 40 is exactly the same as line 30. If it wasn’t we would only get

91

the top half of our double height text. Try leaving out line 30 or 40 when you
run the program and you’ll see what I mean.

1@ REM FROGRAM XII

2@ MODE 7

I@ FPRINTCHR#(141)"DOUBLE HEIGHT"
40 PRINTCHR$(141) "DOUBLE HEIGHT"

Of course the other control characters can be used with the double height
letters. This is shown in Program XIII which produces large red text:

1@ REM FROGRAM XIII

20 MODE 7

3@ PRINT CHR$(141) CHR#(129) "DOUB
LE HEIGHT"

4@ PRINT CHR#(141) CHR#(129) "DOUB
LE HEIGHT"

Just as we can use CHR$(141) to turn on the double height effect, so there
is a control code which returns the micro to normal height text. This is
CHR$(140) which is seen in action in Program XIV showing how double
height and normal text can be mixed.

1@ REM FROGRAM XIV

2@ MODE 7

3@ PRINT CHR#(141) CHR#(129) "DOUR
LE HEIGHT" CHR# (14@) "NORMAL HEIGHT"

4@ PRINT CHR#(141) CHR#(12%) "DOUE
LE HEIGHT"

As you might expect, you can use CHR$(136) to make the large characters
flash, as in Program XV.

1@ REM PROGRAM XV

20 MODE 7

38 FRINT CHR#(141) CHR#(136) CHR#(
129) "DOUBLE HEIGHT"

40 PRINT CHR#(141) CHR#(136) CHR#(
129) "DOUBLE HEIGHT"

You can even use different background colours as with normal sized text
(Program XVI).

92

1@ REM PROGRAM XVI

20 MODE 7

25 FPRINT"@1234546789012345678%"

Z@ FPRINT CHR#(141) CHR#(136) CHR#({
13@) CHR#F(157) CHR#(12%9) "DOUBLE HEIG
HT"

40 PRINT CHR#(141) CHR%(136) CHR#(
138) CHR#£(157) CHR#(129) "DOUBLE HEIG
HTY

So we’ve covered the basics of using the teletext mode. By now you should
be able to use Mode 7 to produce colourful and pleasing displays of your own,
using large and flashing letters to enliven the screen. And we haven’t even
touched Mode 7 graphics, a void I propose to fill in the next chapter.

Finally, after making you type in all those CHRS, I'll inform you that you
can use the VDU commands to pass the control characters to the micro.
Program XVII, which has exactly the same result as the previous program,
shows how it’s done.

1@ REM FROGRAM XVII

2@ MODE 7

3@ VDU 141,136,130,157,129: PRINT"D
OUBLE HEIGHT™"

4@ VDU 141,136,13@0,157,129: PRINT"D
OUBLE HEIGHT"

Easy, isn’t it?

93

Chapter 12: Teletext Tales Revisited

NOW we’ll go into using Mode 7’s graphics capabilities. Although rather
crude compared with the BBC Micro’s other modes, Mode 7 can produce
some entertaining displays, as a glance at Ceefax or Oracle will show. As we
might expect from our earlier experiences, we access these graphics
capabilities by making use of control codes. These tell the micro that instead
of text it is to display block graphics. These are rectangles made up of six
squares, as shown in Figure I. Each block is the size of a capital letter.

Figure I: Block graphics characters

Any of the six squares making up a block can be either on (that is, the
foreground colour is shown) or off (the square is the background colour).
Lighting various combinations of these squares allows the micro to have
available 64 different graphics characters. Figure II shows the shapes on
offer.

When we want the micro to produce block graphics we use one of the
control codes shown in Table I. As you can see from this, seven codes are
available. If we wanted to have red block graphics we would use PRINT
CHRS (145) in just the same way as previously we used PRINT CHR$(129)
to get red text. However we have 64 block graphics characters to choose
from. We have to tell the micro not only that we want block graphics and, at

Code Graphics
number colour
145 red
146 green
147 yellow
148 blue
149 magenta
150 cyan
151 white

Table I: Block graphics codes

94

g

>
2

et
>

=
3

o
=
=

~
o
b=}

o
=
S

>
=
=

o
b

166

el l=l I:F 1.1
N ="l """ "1] °

=

2

SIrFLHLITI=101"°

>
2
5 -
& 3
o =
]]
N]
3
R
3
a3

174

3
>

S

2
3
*
3
v
=
3
=
%
b

~
™)
>

~
o
e
~
w
&
~
o
o
"~
o
-3
~
o
3
~
o
°

238

"
=
o
=
~
~
&
“
~
Y
=
"
&
o

246

o
=
S

~
s
o

254

~
=
°
~
S
~
b7
~
[
o
"~
O
<

FIFLrL=TT =] F] =
Bl el 0] L] *»
M e]

Figure I1: Graphics characters and their codes

the same time, their colour, but also which character we want. This is done by
using another set of control codes, those from 160 to 191 and 224 to 255.

The control codes and the character they refer to are shown in Figure II.
Run Program I and you’ll see them on the screen. The CHR$(145) picks red
graphics while the FOR ... NEXT loops decide which blocks appear. These
shapes can be combined in many different ways to produce quite effective
displays. Use PRINT and TAB along with Figure II and Table I to try your
hand at Mode 7 graphics. It’s not hard, you just have to remember where on

1@
28

w-igp

-t

4@
bt
&8
7@
= 1"]
70

REM FPROGRAM I

FOR code= 168 TO 121

FRINT code,CHR#{145)CHR# (code)
PRINT

NEXT code

FOR code= 224 TO 255

FRINT code,CHR#(145)CHR# (code)
FRINT

NEXT code

95

1@ REM FROGRAM I1

20 PRINT"DIFFERENT BACKGROUND COLO
ur"

I@ PRINT CHR#(13@)CHR#F (157)CHRF (14
8) CHR#* (23@)

40 FRINT"FLASHING"

5@ FPRINT CHRF(1Z@)CHR#(157)CHR$ (13
&1CHR# (148) CHR#F (23@)

6@ PRINT"DOUBRLE HEIGHT™

78 FRINT CHR#{1ZQ)CHR$ (157)CHR$ (13
&ICHR#(148)CHR¥ (141) CHR¥ (23@)

80 FRINT CHR$F{(1Z@)CHR*F (157)CHR$ (13
GICHRF(148)CHR¥ (141) CHR$ (23@)

the screen each of the characters has to go and that the control codes,
although invisible, take up a space.

You’ll be pleased to know that the special effects control codes also work
with graphics characters. Program II shows them in action. It’s not always
easy to remember what the code for a particular character is. Of course
they’re all shown in Figure II and on page 488 of the User Guide, but these
may not always be available.

Happily there is a way of calculating the control code of a character. Each
of the squares that makes a Mode 7 graphics character has a value, as shown
in Figure III. All you do when you want to know a character’s code is to
decide which squares are going to be in the foreground colour. Then total the
values of those squares and add 160. The result is the control code for that
character. Although it sounds complicated, it’s quite simple in practice.
Certainly I find it a lot easier than looking through the lists when the character
I want invariably seems to hide. Figure IV shows a sample calculation.

As you might guess, we can use combinations of the various graphics
blocks to produce something akin to user defined characters. If we wanted,
for reasons best known to ourselves, to produce a cyan figure 8 three lines
deep then we could use Program III. Here the CHR$(150) tells the micro that

1 2
4 8 2
has values| 4
16
16 64
Code number = 2+4+16+160 = 182
Figure III: Square values Figure IV: Calculating codes

96

1@ REM FROGRAM I11
20 PRINT CHR#(15@)CHR# (1B3)CHR$ (23

38 FRINT CHR#(15@)CHR#F (189)CHR$ (23
a)

4@ FRINT CHR$(158)CHR$ (245)CHRE (25
@)

we want cyan block graphics while the other six codes define which shapes are
to be used. Try varying the program with your own choice of character
shapes.

Now after having given you Figure II, which lists the shapes available and
their codes, I'll tell you that there’s a different way of getting the blocks. If you
follow one of the graphics control codes with a string made up of lower case
letters, numbers or punctuation marks you’ll get graphics characters, not the
letters or symbols you might expect. Program IV shows this in action for each
of the lower case letters of the alphabet.

The full set of symbols and the graphics characters they give are shown in
Figure V. Using this method we could produce our large 8 — magenta this time
—in a much shorter program. Program V shows how this is done. We could
even replace three lines with one by using the control codes 10 and 8 to move

'
o
-l
'
F-}

N I
R

-

0

~

*

'
(=]

TFLFLELET:
HFESAERHER

©

L LT

+

dREmPAHANE
FEYEESANEH

'
F~Y
(2,

ES
o
o
A

|
'
o
[7-)
|
)
Blw

g
-
'
=
i
L
~r
'
Bl

FEETETELE:

Figure V: Symbols for graphics blocks

97

1@ REM PROGRAM IV

28 FOR x=1 TO 26

3P alphabet#="abcdefghijklmnopgrst
uvwxyz"

40 string¥=MID# (alphabet#,x,1)

5@ PRINT CHR$(148);string$¥ CHR$(1Z2
Fystring#

68 PRINT

78 NEXT

1@ REM FROGRAM V

20 PRINT CHR#¥(149)"7k"
Z@ FPRINT CHR#(14%9)"=n"
4@ PRINT CHR#(149) "uz"

the print cursor one space down and one space left respectively. This is shown
in Program VI

1® REM PROGRAM VI

20 PRINT CHR#(14%)"7k"CHR* (1@) CHR#
(8)CHR#F(B)CHRF(B)CHR#* (142) "=n"CHR$ (10
)CHR# (8) CHR#* (8) CHR#% (B) CHR# (14%9) "uz "

You’ll notice that the whole thing is getting more and more like a user
defined character, and you may be wondering if we could replace all those
CHRS$s with a string of VDUs as we did at the end of the last chapter. The
answer is yes, we can — and Program VII shows how it’s done. It’'s much
neater, but for the rest of the programs I'll stick to using CHRS. I think it
makes things a little clearer.

1@ REM PROGRAM VII
2@ VDU 149,183,235,10,8,8,8,149,18
9,238,1@,8,8,8,149,245,25@, 10

If you’re wondering what that last control code does, it just puts the prompt
on the next line. Try leaving it out and see what happens. Because the 149
code is still working on that line, the prompt is interpreted as a block graphics
character with ugly results. Before you read on, just make sure that you
understand what we’ve covered above. Have a go at producing your own

98

Mode 7 shapes on screen, using any of the methods outlined above. You’ll
find that, with a little practice, it’s quite easy to do.

Having got so far, now’s the time to tell you that we’ve only dealt with one
of the two forms of block graphics available in Mode 7. We've been using
contiguous block graphics. We could also have used something called
separated graphics. Program VIII, a variant of Program IV shows the
difference.

1@ REM FROGRAM VIII

28 FOR x=1 TO 26

3@ alphabet#$#="abcdefghijklmnopgrst
uvwxyz "

4@ string#¥=MIDF(alphabet#,x,17

S5@ PRINT "CONTIGUOUS SEPARATE"

6@ FRINT CHR#(148) 3;string#$,CHR$(15
4) 3string#

7@ NEXT

As you can see, contiguous graphics have all the squares that make them
up joined together. Separated graphics have all the six squares which make up
that character separated by the background colour. It’s as though there’s a
border around each square, and consequently between adjoining characters
on the same line. You get the “skeleton’ of the block.

Contiguous block graphics are the default — the micro will use them unless
you tell it differently. You can switch to separated graphics by using the
control code 154 and back to contiguous graphics with control code 153.
Which you use depends on what effect you want. At times separated graphics
look much neater than contiguous ones. Try out some of the earlier programs
using CHRS$(154) to get separated graphics and see what you think.

While you've been playing around with Mode 7 you may have come up
against the fact that the control codes, although invisible, take up a space on
the screen. Though this doesn’t matter too much in text, it can mess up
graphics displays. You don’t want gaps all over your beautiful artwork. Run
Program IX and you’ll see what I mean. The program gives the 20 shapes
required, but that gap in the middle spoils the effect. That’s where the control

1@ REM FROGRAM IX

28 PRINT CHR$(147);
38 FOR repeat=1 7O 1@
4@ FPRINT CHR$(247);
58 NEXT repeat

6@ FRINT CHR$(148);
78 FOR repeat=1 T0 1@
8@ FRINT CHR#(251);
28 NEXT repeat

1@0@ PRINT

99

code 148 is hiding.

You might have wondered if there was a way round this effect and there is,
using yet another set of control codes. Control code 158 has the effect of
holding the graphics. What this means is that when you use that code in a line
the micro will carry on printing out the required block graphics characters.
However when it comes to another control code, instead of leaving a space as
normal it fills that space in. It does this with the same graphics character as
the last one it used. So by using the hold graphics code the ugly gap of
Program IX can be avoided. Program X shows how this is done.

Eagle-eyed readers will have spotted that, although the lines are joined,
there are 12 of the first character and 10 of the second. The control spaces

1@ REM FROGRAM X

20 PRINT CHR%(147);

3@ FOR repeat=1 TO 1@

40 FRINT CHR$(247);

5@ NEXT repeat

6@ PRINT CHR$(158)CHR$(148):
7@ FOR repeat=1 T0 10

8@ PRINT CHR#(251);

@ NEXT repeat

182 PRINT

have been filled in with the previous block graphics character. This holding
effect can be switched off. The control code 159 returns the rest of the line to
the normal way of things, where control codes appear as spaces.

And that’s nearly the end, apart from one last control code, 152. This
conceals the display. Anything that comes in a line after a 152 is
automatically the background colour. This, of course, means that you can’t
see the rest of the line. Printing something on the screen that you can’t see may
sound a bit daft but it does have its point. By printing a message on the screen
invisibly and then overprinting the 152 control code with a space you can
make things appear as if by magic. In a way, it’s the Mode 7 version of VDU

Control code Result
152 Conceal display
153 Contiguous graphics
154 Separated graphics
158 Hold graphics
159 Release graphics

Table II: Graphics control codes

100

19. Program XI shows you the conceal display control code in action. You

don’t see the messages until the code is overwritten with a space.

1@ REM PROGRAM XI

2@ CLS

2@ PRINT TAB(1,11)CHR$(130)CHR$ (15
2) "GREEN"

4@ PRINT TAB(1,12)CHR$(131)CHR$ (15
2) "YELLOW" ‘

S@ FRINT TAB(1,13)CHR$(132)CHR$ (15
2) "BLUE"

6@ FRINT TAE(1,23)"PRESS SPACE FOR

NEXT COLOUR"

780 FOR X=11 TO 13

80 WAIT$=GET$

9@ PRINT TAB(2,X)" "

100 NEXT

And that’s the end of our tour of Mode 7. Table II sums up these last
control codes. As you can see, the basics of the mode are quite simple, but the
effects obtained using the control codes can be complicated. And the great
advantage is that you aren’t using up lots of precious memory. Have fun!

101

Chapter 13: SOUND — Basic Principles

ALL the various sounds and noises that come from your micro while playing
games have probably given you some idea of the scope of its sound-producing
abilities. These range from derogatory noises when you lose a game, through
simple tunes and even onto imitating musical instruments. Yet they come
from a single speaker.

All the marvellous sound effects are produced with just two Basic
commands, SOUND and ENVELOPE. It’s the skilful use of these that gives
the BBC Micro its musical abilities. We’ll deal with both as my tale unfolds,
but for the time being let’s start with the simplest, the SOUND command.

This can be viewed as a single keyword, SOUND, followed by four
numbers separated by commas. The SOUND keyword tells the micro to
make a noise. The numbers decide how long the noise will last and what it will
sound like. The structure of the command is SOUND W,X,Y,Z where W, X,
Y and Z represent the figures that are used to control what sort of sound is
actually going to be produced.

We’'ll deal with each of these parameters in turn, but first let’s make a noise.
After all that’s what all this is about. Type the following into your micro:
SOUND 1,~-15,53,20. Now press the RETURN key and you should get a
single note. It’ll last for one second, be as loud as your micro can make it and,
for the musically inclined, will be middle C in pitch (more or less). Don’t worry
how it’s done for the moment. Just try it out and see that the SOUND
command, with those four figures after it, does produce a note. Later we’ll be
playing around with this basic note in order to give examples of how the
SOUND command can be controlled by these four numbers.

Now let’s deal with each of them in turn and see how they affect it.
Remember the structure is: SOUND W,X,Y,Z. The figure we put in the place
of the W decides which channel will be used to produce the noise that the
SOUND keyword tells the micro to make.

The BBC Micro’s sound generator has four channels, each of which can
produce a note simultaneously. This means that you can have four notes
playing at the same time, one on each channel. Actually doing that lies in the
future. For the time being let’s just stick with producing one note at a time. As
I've said, there are four channels and they can be selected by making W equal
to 0, 1, 2 or 3. Let’s ignore channel 0, the “special effects’” one, and just deal
with channels 1, 2 and 3. Any of these can be used to produce a note.

Program I has each of them in turn making the noise we made before. The
SOUND command is just the same except that each time round the FOR . . .
NEXT loop the channel number, W, varies. At first it’s 1 (for channel 1 to be

102

i3 REM FPROGRAM I

20 FOR channel=1 TO 3

Z@ SOUND channel ,—15,53,28
48 NEXT channel

1@ REM PROGRAM 11
2@ SOUND 1,-15,53,20
@ SOUND 2,-15,69,20
4@ SOUND 3,-15,85,20

18 REM FROGRAM I1I1

28 FUOR loudness = —15 T0 @
I@ SOUND 1,loudness,S53,2d
48 FOR » =1 TO ZQ@@:NEXT =x
5@ NEXT loudness

used), and then 2 (for channel 2) and 3 (for channel 3).

This, however, may not convince you that three separate channels have
been used, as it just sounds like one note. Well, then, for the Doubting
Thomases among you there’s always Program II, which produces a different
note on each of the three channels at the same time — giving us, in fact, a
chord. You might notice that we have selected each channel by the figure
we’ve placed in the W position. The different notes have been produced by
varying the Y parameter, of which more later.

The next parameter to consider is X. The number we place in this position
can vary between 0 and —15 and determines how loud the note will be.
Strangely enough the loudest note is produced by —15, the quietest by —I.
Putting O in the place of X produces silence. This can be very useful as
sometimes you may need silence to separate two notes. In fact O loudness is
used in a later example.

Program III produces the original note again, the loop varying the value of
X so that the note gets quieter each time around. Don’t worry too much about
line 40. It’s just there to slow things down a little and produce an appreciable
gap between the notes. Notice how the sound seems to fade away into the
distance. You’ve got your first sound effect!

Leaving the parameters that select the channel and the loudness, we’ll move
onto the figures that go in the place of Y in the SOUND command. It’s these
that determine the pitch of the note produced. Pitch is just a term used to
describe whether a note is high or low. A note that is high in pitch will have
you squeaking if you try to sing it. One that is low in pitch will have you
“singing in your boots”, as my old music master used to say.

It’s easy to vary the pitch of the notes produced by replacing Y with a figure

103

1@ REM PROGRAM IV
2@ FOR pitch=0 TO 255
3@ SOUND 1,-15,pitch,z2@
4@ NEXT pitch

1@ REM FROGRAM V
2@ FOR pitch=@ TO 255 STEP 4
3@ SOUND 1,-15,pitch,2@

4@ NEXT pitch

1@ REM FROGRAM VI

20 FOR duration=@ TO 254
3@ SOUND 1,-15,53,duration
4@ SOUND 1,@8,53,duration
S@ NEXT duration

between 0 and 255. The lowest note you can get on the micro is with Y equal
to O, the highest with Y equal to 255. If you can stand it, Program IV will
demonstrate the notes available, using a loop to vary the Y parameter from 0,
the lowest note, to 255, the highest. It lasts over four minutes, the note slowly
creeping upwards, so it’s no disgrace to press Escape! Incidentally, you might
like to reverse the loop to get a descending series of notes. I leave that to you.

You might find Program V more bearable. This does the same thing, only
the notes go upwards in steps of four, technically known as semi-tones. These
sound much more natural to our ears. More about them later.

The final parameter is Z, which determines the length of each note. This can
vary from 0 to 254 in value. The figure 20 in the place of Z gives a note of one
second’s duration. You could say that each unit was worth one twentieth of a
second. If you put 200 in the duration parameter you would get a note lasting
10 seconds. If, for peverse reasons of your own, you make Z either —1 or 255
then the note will continue to sound indefinitely. Try it — you can always press
Escape when you've had enough. It makes Program IV seem interesting by
comparison!

Program VI again uses a loop, this time to vary the length of the note from
nothing to 12.7 seconds. You’ll notice that by having 0 in the X position. line
40 produces a sound that has zero loudness. This is just to provide a gap
between the example notes. Notice how it gives the impression of something
slowing down.

So using these four parameters we can vary the notes produced by the
SOUND command. Program VII does just this, using a loop to produce a
series of varying notes. Each of the four parameters W, X, Y and Z.
controlling channel, loudness, pitch, and duration respectively, are set

104

randomly. The result is “computer music”, strangely soothing if listened to for
a while.

Try varying the ranges of the RND expressions to see what happens to the
type of “music” produced. It’s great fun, and you can learn a lot about the
SOUND command by playing around.

1@ REM FROGRAM VII

28 REFEAT

Z@ pitch=RND(255)

4@ loudness=—1*RND {16} +1

5@ duration=RND(255)-1

6@ channel=RND (3)

7@ SOUND channel,loudness,
pitch,duration

8@ UNTIL FALSE

105

Chapter 14: Matters of Note

NOW for musical scales. Not that I intend to give you a music lesson, I
wouldn’t dare, but I will show you the basics of producing simple tunes with
your micro. In the last chapter we examined the SOUND command and
learnt how to use it to produce noises. Each of these separate noises is
technically called a note and by putting together a series of notes we get a
tune.

It should be pointed out that some series of notes are more tuneful than
others — as you may have found with the random music generator! This is
because the human ear has come to expect a certain consistency in the notes
that make up tunes. It wants them to go up and down, or change pitch, by
regular amounts.

Try running Program 1. This goes upwards in a series of steps called
semitones. It does this by adding four to the pitch parameter of the SOUND
command each time round the loop. These semitones are the natural building
blocks of western music. When tunes go up and down in pitch (higher or
lower, soprano or bass) they tend to do so in semitones or groups of
semitones. Even though Program I will probably have you pressing Escape
before its end, you'll find it a lot more acceptable than Program II which goes
up in steps of one, a quarter of a semitone.

Since we've been talking about semitones you might expect that we’ll
be:oming to whole tones and this we do with Program III. This plays a series
of notes, each successive note being raised in pitch by one tone (or two
semitones). So increasing the pitch parameter by four raises the note by a
semitone; increasing it by eight produces a note one whole tone higher. Higher

1@ REM FROGRAM I

20 FOR pitch=@ TO 255 STEF4
3@ SOUND 1,-15,pitch,2@

4@ SOUND 1,@,pitch,Z2@

5@ NEXT pitch

1@ REM FROGRAM II

20 FOR pitch=@ TO 255 STEFP 1
3@ SOUND 1,-15,pitch,20

4@ SOUND 1,@8,pitch,20

S@ NEXT pitch

106

1@ REM FROGRAM I1I

20 FOR pitch=@ TO 255 STEFS
3@ SOUND 1,-15,pitch,2@

4@ SOUND 1,@,pitch,20

5@ NEXT pitch

1® REM FROGRAM IV

2@ pitch=50

3@ REFEAT

4@ SOUND 1,-15,pitch,Z20
5@ READ increase

6@ pitch=pitch+increase
7@ UNTIL increase=0

88 DATA B,8,4,8,8,8,4,0

notes require different combinations of four and eight to be added to the pitch
parameter.

The trouble with the previous programs is that although they worked in
tones and semitones, the natural building blocks of music, they were boring.
They leave you with that “waiting for the other boot™ feeling! This is because
our ears not only expect tunes to be composed of notes which vary in pitch by
tones and semitones, but also they prefer certain selections of the available
notes. Try running Program IV. Much more satisfying, isn’t it? It has a
complete feeling about it.

After the first note is played the following notes are increased in pitch by
the amounts shown in the DATA statement. As you’ll expect by now, these
increments are all fours and eights, but they are in an order that sounds
pleasing to the ear. This is known as a scale, and most tunes are made up of
combinations of notes picked from one scale.

To recap, nearly all the tunes you know consist of series of notes whose
pitch changes in multiples of tones and semitones. The notes go up and down
in discrete bundles made up of these measures and most tunes confine
themselves to a selection of the available notes. What this means for the BBC
Micro is that if you’re trying to write a tune you know that after you've picked
the start note all the other notes will have the start note’s pitch parameter
varied by factors of four or eight.

Of course the channel, loudness and duration of the note may vary as well
but in this chapter we’ll concentrate on the pitch. It’s much easier to use in
practice than to describe. Try running Program V. This produces a fairly
uninspiring version of a well-known tune. It’s hardly wonderful music but you
can see from the DATA statement how the pitch parameter of the notes varies
by factors of four or eight from the pitch parameter of the first note.

Once I had the first note it was just a matter of figuring out whether the next

107

1@ REM PROGRAM V

2@ REPEAT

3@ READ note

40 IF note=@ THEN END

5@ SOUND 1,-15,note,1@

6@ UNTIL FALSE

7@ DATA 38,30,38,26,30,38,0

note was up or down and adding or subtracting the fours and eights as
necessary. Then I just put them in a DATA statement and let the loop read the
pitch and play the tune. You can play your own tunes by putting in your own
DATA statements. The problem is that you have to figure out which DATA
statements produce which notes. Program VI will help you with this. It is a
very simple one which allows you to write micro music by ear.

It begins by asking you for the pitch and duration parameters of the tune’s
first note. The micro then plays this and asks you if you want to keep it. If you
do, it will save the note and ask you if you want to play the tune. The program
carries on like this, asking for the parameters of notes, playing them and, if
required, saving them. When you finally decide to hear the tune it will play it
and display the DATA statement values used.

It’s simple to write tunes using this program. When you want to play them
just modify PROCreadnote and PROCplaystring. Of course this has been a
fairly limited treatment. Only one of the BBC Micro’s four channels has been
used, and we haven’t varied the loudness at all. Also we’ve avoided playing
more than one note at a time and producing harmonies.

All this, and more, will follow.

1@ REM PROGRAM VI

20 counter=1

3@ PROCnote

4@ PRINT:FRINT

S8 FRINT "Data Statements:
68 PRINT:PRINT

78 PRINT tune#

8@ END

2@ DEF PROCtune
12@ REFEAT
11®@ PROCreadnote
120 PROCplaystring
13@ UNTIL counter >=LEN {tune#%)
14@ ENDFROC
158 DEF PROCnote
168 CLS
1780 INFUT"FPitch of note?" pitch

108

18@
170
on
200
21@
220
230
240
250
260
27@
ES*"
280
r NO"
29@
3aa
10

320
330
4@

350
360
370
380
ES 1"
390

PRINT:PRINT
INFUT"Duration of note?" durati

PRINT:FRINT

SOUND 1,-15,pitch,duration
FRINT:FRINT:FRINT

FROCkeepnote

ENDFROC

DEF PROCkeepnote

FRINT"Keep this note?"

FRINT "Fress Y and Return for Y

FRINT "Any letter and Return fo

FRINT:FRINT

INFUT key#

IF key#="Y" OR key$="y"

THEN FPROCstring

ELSE PROCnote

ENDFROC

DEF PROCstring

tuneF=tuneF+STRF (pitch)+","

+S5TR#¥ (duration)+","

CLS

PRINT "Flay the tune now?"

FRINT: PRINT

FRINT "Press Y and Return for Y

FRINT "Any other letter and Ret

urn for NO"

400
410

420
430
440
450
460
470
480
49@
S04
510
520

INPUT key#

IF key# ="Y" OR key#% = "y"
THEN FROCtune ELSE FROCnote

ENDFROC

DEF FROCplaystring

pitch=VAL (pitch#)

duration=VAL {(duration#)

SOUND 1,-1S,pitch,duration

SOUND 1,8,pitch,®

ENDFROC

DEF FROCreadnote

pitch#=""

REFPEAT

IF MID# (tune¥,counter,1)<>","
THEN pitch#=pitch#

109

110

53@
540

S50

S56@
S7@

580
590

&8

+MID#F (tuneF,counter 1)
counter=counter+l1
UNTIL MID# {(tune¥,counter—-1,1)="

duration$=""
REFEAT
IF MID#(tune¥,counter,13<{>" "
THENdurationf=duration#
+MID%¥ (tune#$,counter, 1)

counter=counter+1
UNTIL MID# (tune#,counter—i,1)="

ENDFROC

Chapter 15: Channels, queues and Basic

SO far our treatment of the SOUND command has been fairly limited.
Ignoring the special effects channel, the BBC Micro has three sound channels
available but we’ve mostly avoided using more than one at a time. When we
did the result was a mess — remember the random music generator!

To make more interesting noises we have to use more than one channel at a
time. To allow us to do this without causing chaos BBC Basic allows the
SOUND command to be extended to control the flow of notes through the
three channels. For the time being, though, let’s just stick to one channel and
play three notes one after the other.

1@ REM PROGRAM I

2@ SOUND 1,-15,60,20
I@ SOUND 1,-15,68,20
4@ SOUND 1,-15,76,20

Program I isn’t very exciting but there’s a lot going on which repays closer
attention. The three notes play one after the other in the order of the SOUND
statements. The first note plays for a count of 20, then the second and when
that finishes the third sounds. All very logical. Let’s try Program II and see
what happens. You'll notice that it’s the same as Program I except that each
SOUND command is followed by a PRINT statement.

Now you might think that the first note will be played followed by the
PRINT statement putting something on screen, then the second note and so
on. Have a go and see. What actually occurred was that the three messages
were printed on the screen before the first note had finished playing. Then the
second note played, then the third. The micro appeared to have jumped
around the program lines instead of following them one by one in line number
order as usual.

Appearances are deceptive, for the micro read each line in turn and

1@ REM PROGRAM II
2@ SOUND 1,-15,60,20
3@ PRINT "NOTE1"
4@ SOUND 1,-15,68,20
5@ PRINT "NOTEZ2"
6@ SOUND 1,-15,76,20
7@ PRINT “NOTE3"

111

followed its instructions before moving onto the next one and obeying that.
What happened was that the program read line 20 and started playing the first
note. It then read line 30, printed the message, and had a look at line 40 which
told it to produce the next note.

The trouble was that there was already a note playing on that channel and
(in the very fast world of the microprocessor) it would continue playing for
some time. So as not to hold up the program, the micro put the sound it had
created on a special queue for that channel and carried on with the next
instruction which is to print the second message. This it did and, because BBC
Basic is so fast, it did it before the first note had stopped playing. It then came
to line 60 which told it to play yet another note.

Because it hadn’t finished the first yet, nor gone on to the second, it popped
that note on the queue and went on to line 70. The micro printed the last
message and, as there were no more lines, the program stopped running. It did
not stop making the noises, however, but carried on working its way down the
queue. The important point is that the micro continues to play the notes in the
queue even after it has stopped processing a program’s Basic commands. In
this sense the queues — each channel has its own — are independent of the
program.

From this you can see that it’s possible for a program to rush through its
Basic statements, finish whatever it was meant to do and the micro will carry
on playing the sounds in the queues regardless. This can at times be
embarrassing. Imagine a game that sounds a fanfare every time you zap an
alien. Suppose you actually manage to get a few of them so that the fanfares
build up in the queue. Then you get hit, it’s your last life and the game is over.

The program might order the micro to make a “losing” type of noise on the
same channel. This it will do and, since there are still fanfares to be played, it
will pop it on the queue. Instead of the losing noise when you get hit, you get a
succession of fanfares until the queue reaches the losing sound. In this sense
the queue can be a bit of a nuisance, causing the sounds to be out of step with
the program.

While the example above is fairly trivial it does show that silly things can
happen. It would be nice if there were a way of emptying the notes from the
queue to give another note priority. This would allow an “important” sound to
take precedence by wiping all the waiting sounds from the queue and so
playing it immediately. In our example this would mean that the losing sound
would be played immediately.

In fact, there is a way that you can get a SOUND command to take priority
over others in the queue. It involves a different way of using the parameter
that selects the channel. This, if you remember, is the first number following
the SOUND command. Up until now it has only been a single digit — 1, 2 or 3.
By using this channel parameter as a four figure hexadecimal number you can
do all sorts of clever things with the simple SOUND command.

It is not as complicated as it sounds, especially as we’ll only be
concentrating on two of the figures. Previously we’ve used the SOUND

112

command in the format SOUND W,X,Y,Z where W selects the channel, X
the loudness, Y the pitch and Z the duration of the note. In its expanded role as
a hexadecimal number, the channel selection parameter can be looked on as
&TUVW where T, U, V and W represent figures.

The T parameter we shall ignore for the time being. Similarly, the U
parameter, which controls the synchronisation of notes, will be left to a later
date. All we are left with is V, which can have the values O or 1, and W which is
the channel selection number and is used exactly as before — except that it
comes at the end of a four digit number.

Previously, when we have been using SOUND, the micro has only come
across W in the first position after SOUND and so has assumed that T, U and
V were all 0. What this means is that where we have used SOUND
1,~15,60,40 we could equally have used SOUND &0001,—~15,60,40. The
result would be the same and the SOUND command would work as we have
come to expect.

If we want a SOUND command to be obeyed immediately, overriding any
other notes that might be in the queue, we change the V parameter from O to 1.
When the program gets to this line it will obey that command immediately,
stopping any note that’s playing and “flushing” the queue.

1@ REM PROGRAM III

2@ SOUND 1,-15,60,20

3@ SOUND 1,-15,68,20

4@ SOUND%@@11,-15,76,20

Let’s see what happens if we change the last line of Program I to make
Program III. It seems as though the micro only plays the last note. What’s
actually happened is that the micro has read line 20 and started to play a note.
It then read the next line and put that note on the queue and got to the last
SOUND instruction. This had the V parameter set to 1 so the micro
immediately cleared the queue, stopped playing the note that it was playing
and played the final note. This happens so fast that you only hear the final
sound.

Program IV slows things down a little with a delay procedure. Run it and
you will hear all three notes. The second line tells the micro to make a noise
and, since there is nothing in the queue, it does this. While this is still playing,
the micro whirls through the first of the delay loops and when it gets to the
second SOUND command it puts this on the queue. It then goes on to the
second delay loop.

In the meantime, the first note has reached the end of its alloted time and
stops. The second note comes off the queue and starts playing but never
reaches the full length specified by its duration parameter. This is because the
micro finishes the second delay loop and reads the next SOUND command.
This has a 1 for its V parameter so the computer immediately stops playing its
present note and obeys that SOUND command straight away. Hence the

113

1@ REM FROGRAM 1V

28 SOUND 1,-15,60,28

3@ FPROCdelay

49 SOUND 1,-15,48,20

S@ FPROCdelay

68 SOUNDE@G11,-15,76,28
7@ END

8@ DEF PROCdelay

P8 FOR N=1 TO 1@8@@A:NEXT
188 ENDFROC

shortened second note.

By making the V parameter a 1 you can ensure that SOUND command
gets priority over all other sounds playing on that channel. In effect, it cuts.
short the note that is playing. We could use this in the games program
mentioned earlier to make the “losing” SOUND command get rid of all the
fanfares in the queue and play immediately. Also it can be used to ensure that
noises are synchronised with whatever a program is doing by flushing the
queues as in Program V.

1® REM PROGRAM V

2@ SOUND 1,-15,68,20
I@ PRINT "NOTE1"

4@ SOUND 1,-15,68,20
5@ PRINT "NOTEZ2"

6@ SOUND 1,-15,76,20
7@ FRINT "NOTE3"

80 FOR N=1 TO 100

9@ PRINT"SOUNDING"
100 NEXT

112 SOUND %11,0,2,@

What has happened is that the micro has read the first SOUND command
and played a note and then put the other two notes on the queue for channel 1.
Then the loop prints “sounding” on the screen and when it has finished the
micro reads the last SOUND command. This has a V parameter of 1, so it is
executed immediately, flushing the queue at the same time. However, since all
the other parameters are O there is just silence and the sound’s ending
coincides with the ending of the printing loop. You might notice from the last
line that there is no need to put in the first two zeroes after the ampersand (&).

So far we’ve covered how the SOUND commands can be stored in queues
and how they can appear to operate independently of Basic. We have also
seen that this can lead to problems where sounds can be out of phase with
what the Basic program is doing and how to remedy this by flushing the

114

queues. We have not mentioned how many sounds can be held in each queue
and what happens when they are full. Try Program VI and see what happens.

From what happened in Program I you might expect that it would sound
the first note while obeying all the PRINT statements. That is, NOISEI,
NOISE2, ... NOISE9 would appear on the screen while the first note
sounded. When that note had finished, the other notes on the queue would
take their turn.

What does take place is that the first note sounds with NOISE 1 to NOISE6
appearing on the screen. When the first note is finished, the second starts
playing and NOISE?7 is printed. The third note coincides with NOISES, the
fourth with NOISE9. The reason for this is that although the Basic can carry
on quickly by putting the SOUND commands on the queues these queues
only have a limited capacity.

The manual says that each channel can hold four sounds as well as the one
currently playing. When the channels are full up, the micro will happily work
its way through all the Basic statements until it comes to the next SOUND
command. Here it comes to a halt until there’s a place available on the queue.
This means that the program hangs until the note that’s playing reaches the
end of its duration parameter and the next note can come off the queue. Then
the SOUND command that’s caused the delay can be processed and popped
onto the queue allowing the program to continue.

This is the explanation for what happened in the last program. The
program happily played the first sound and popped the rest on the queue until
it could do no more and the program came to a stop. When the first note

1@ REM PROGRAM VI
2@ SOUND 1,-15,6@,2@
3@ PRINT “NOISE1"
4@ SOUND 1,-15,68,20
5@ PRINT "NDISEZ2"
6@ SOUND 1,-15,76,2@
7@ PRINT “NOISE3"
8@ SOUND 1,-15,6@,20
9@ PRINT "NOISE4"
1@ SOUND 1,-15,68,20
11@ PRINT “NOISES"
12@ SOUND 1,-15,76,2@
13@ PRINT "NOISE&"
14@ SOUND 1,-15,60,20
15@ PRINT "NOISE7"
160 SOUND 1,-15,68,20
170 PRINT "NOISES"
18@ SOUND 1,-15,76,2@
19@ PRINT “NOISE9"

115

stopped playing the sounds shuffled along the queue and made room for the
SOUND command that was causing the delay. The program then obeyed the
next PRINT command, putting NOISE7 on the screen and went on to the
next line. Here it came to a halt at the next SOUND statement and had to wait
until the note stopped playing and so on.

The trouble is that, by my calculations, the program plays one sound and
puts five on the queue before it grinds to a halt at the seventh SOUND
command and has to wait to print NOISE7. This seems to be one more than
the manual would allow. Still, the point remains the same. When a channel’s
queue is full the next SOUND command for that channel will cause the
program to wait.

116

Chapter 16: All Together Now

SO far we've covered the production of notes on the BBC Micro using the
SOUND command, and learned about the sound channels and how to flush
them. In this chapter we’ll be covering the problems of getting two or more
notes to sound at the same time. This means synchronising the notes on
different channels.

Try out Program I. This plays three notes at the same time. This is called a
chord. If it sounds nasty, then it’s a discord. Peters’ First Law states that it is
much easier to produce discords than harmonious chords! I doubt if anyone
has ears sharp enough to tell, but, because it takes time for the micro to
interpret a line of Basic, the second and third notes start a split second after
each other. Since they have the same duration, this means they will end in a
ragged manner, first note one, then note two, then note three.

1@ REM PROGRAM I

2@ SOUND 1,-15,60,20
@ SOUND 2,-15,76,20
4@ SOUND 3,-15,88,20

Program II has a couple of delay loops in it to accentuate this effect. This is
supposed to lessen the clarity of chords, though how anyone can tell beats me.
Still, BBC Basic has a way to overcome this undetectable effect. It’s not as
pointless as you might think, as it also comes in useful when you’re writing
tunes for the micro, helping you make sure that the right notes are played at
the right time.

You’ll remember that the channel parameter can be treated as a four digit
hexadecimal number & TUVW. W was the channel number with values of 0,
1, 2 or 3 while V was the flushing control which was set to 1 to clear a
channel’s sound queue. T we ignored, and will continue to do so until we get to

1@ REM PROGRAM 11
2@ SOUND 1,-15,6@0,28
3@ FOR N=1 TO 1@@@:NEXT N
4@ SOUND 2,-15,76,20
5@ FOR N=1 TO 1000:NEXT N
6@ SOUND 3,-15,88,20

117

U Notes in
Parameter Effect chord

0 Plays without reference 1
to other channels

1 Waits for note on 2
one other channel

2 Waits for notes on 3
two other channels

3 Waits for notes on 4
all channels

Figure I: Synchronisation parameter values

the ENVELOPE command. It’s the U parameter that decides how notes are
synchronised.

If you think about it then you’ll realise that for two or more notes to play at
the same time each must be on a separate channel. The U parameter in a
SOUND command tells the micro that it is not to play that note until there is a
certain number of other channels with notes.

When the required number of channels containing notes is reached then all
of them start playing at the same time. The value of U decides how many
other channels must have notes before the chord is played. If U is 0, then the
micro plays the note when it can, without reference to other channels. Ifitis 1,
the micro will hold that note until there is another note available on another
channel. If it is 2 it will wait until two other notes are available, that is all three
notes will start simultaneously. If it is 3, it will wait for three other notes when
all four of the micro’s channels will be in use. The values are shown in Figure I.
Try Program III to see it in action.

1@ REM PROGRAM III

2@ SOUND %@2@81,-15,60,40

I@ FOR N=1 TO 18@@:NEXT N
4@ SOUND %@202,-15,76,4@

S@ FOR N=1 TO 1@@0@:NEXT N
6@ SOUND %@203,-15,88,40

What happens is that the micro reads the first SOUND statement and,
because it has 2 in the U parameter, it waits for two notes to be available on
other channels. When it has these it plays all three notes together. The delay
loops make for a slight pause before the chord is played. This shows that the
micro really is waiting for the other two notes. Since the duration parameters
are the same, the notes all stop playing at the same time. If this weren’t the
case there would be a ragged ending. Setting the U parameter only

118

1@ REM FROGRAM IV

20 SOUND %@301,-15,6@,40
3@ SOUND %@302,-15,76,40
4@ SOUND %@303,-15,89,40

synchronises the start of the notes.

Can you figure out why nothing seems to happen when you run Program
IV? Don’t think your computer has gone wrong. What happens is that the
micro reads the U parameter of the first SOUND statement. As this is 3 it will
not play that note until sounds are available from three other channels.
Unfortunately the program only gives two other notes so the micro can’t play.
Hence the silence.

However, the notes in the channel don’t just disappear. They are still in the
queues waiting for a note on the fourth channel. Give them one by entering
SOUND &0300,—15,88,40 and pressing Return. Now that the fourth channel
has a note, all four will sound.

Before you run the other programs in this chapter it would be wise to press
Escape to clear the sound queues of any left-over notes. If you don’t, you
might get some strange results. You have been warned. One point to bear in
mind is that when the micro comes across a U parameter that makes it search
the channels for other notes, it will quite happily accept ones that are already
playing. Try Program V.

1@ REM PROGRAM V

2@ SOUND %@101,-15,60,40
3@ SOUND &@102,-15,76,40
4@ SOUND %@203,-15,88,40
5@ SOUND %@200,-15.88.40

At first glance you might think it will play the first two notes as the U
parameter ties them together. Then it will hang up as the next two notes have a
U parameter of 2 and need a third before they can sound. Playing the program
will soon show you that this isn’t so, as all four notes are played at once. This
is because the micro comes to the last two SOUND statements and starts
searching the other channels for a note. Since they’re already playing notes
and carry a U parameter, it will quite happily accept either of them to make up
the third note. And so the U parameter’s condition is fulfilled and the note
plays.

However, if we put in a line of Basic as in Program VI you’ll notice that
only the first two notes are played and that the third and fourth are left in the
queues. Enter one of the sound commands from the first two notes and you'll
hear these left-over sounds along with the one you’ve entered. Remember. if
you’re getting funny effects it’s probably because you’ve got some notes left in
the queues. Get rid of them with Escape.

Finally, Program VII combines the synchronisation parameter U with the

119

flushing parameter V, which we covered in the last chapter. This allows us to
play three chords in succession by pressing the key. Notice that the final
SOUND statements which flush the chords are synchronised to prevent a
ragged ending, though I don’t know who would be able to tell if they weren’t.

1@ REM PROGRAM VI

2@ SOUND %@101,-15,6@,40
I@ SOUND %P102,-15,76,40
49 FOR N=1 TO 4@@8:NEXT N
5@ SOUND %@203,-15,88,40
6@ SOUND %“0200,-15,88,40

18 REM FPROGRAM VII

2@ SOUND %8281,-15,52,254

30 SOUND :B202,-15,468,254

4@ SOUND %@203,-15,80,254

5@ PRINT"Press key for next chord.

68 pauseF=GET#

7@ SOUND &8211,-15,68,254

80 SOUND =@212,-15,76,254

?@ SOUND %@213,-15,88,254

1898 PRINT"Press key for next chord.

110 pause$:=GET#

128 SOUND %@211,-15,468,254
130 SOUND &B212,-15,84,254
1483 SOUND #@0213,-15,96,254
1580 FRINT"Fress key to end."
160 pause$=GET#

178 SOUND &@211,.9,8,0

1i8@ SOUND B21Z,0,8,8

1980 SOUND =©213,0.,8,8

120

Chapter 17: Not the Sound of Music

THE sound effects channel is the channel you select by making the first
parameter of the SOUND command equal to zero. This means that soon
you’ll be using lots of SOUND commands such as SOUND 0,—15,2,40. With
channel 0 you can create all sorts of weird and wonderful effects — especially
when you start to use the ENVELOPE command which we’ll come to in the
next chapter.

In all there are eight basic sound effects available on channel 0. You can get
them by making the pitch parameter of a channel 0 command equal to a
number between 0 and 7. Type in Program I, run it and you’ll get a conducted
tour through the various noises. Figure I summarises the result each value of
the pitch parameter has on a channel 0 SOUND command.

So to use the sound effects channel we use a SOUND command such as
SOUND 0,—15,pitch,20 where pitch has a value between 0 and 7. The value
you give to pitch decides what kind of sound effect you get. As you’ll see from
Figure I, putting in values of 0, 1 or 2 all give something called “periodic

1@ REM PROGRAM 1

20 REPEAT

3@ FOR pitch=@ T0O 7

4@ CLS

S@ FPROCnoise(pitch)

6@ NEXT pitch

7@ UNTIL FALSE

88 END

2@ DEF FROCnoise{(pitch)

1200 PRINT TAB(S5,5) "This 1is noise n
umber "i;pitchsi"."

11@ IF pitch=3 OR pitch=7 THEN PRIN
T TAB{(S5,15)"This can be varied by usi
ng" TAB{(S5,17)" a sound on channel 1"

128 FPRINT TAEB(5,28) "Fress a key fo
r next noise."”

13@ SOUND 8,-15,pitch,255

140 Wait=GET

150 SOUND %10,0,0,0

168 ENDPROC

121

Value of P Noise produced on channel 0

High frequency periodic

Medium frequency periodic

Low frequency periodic _

Periodic — frequency depends on pitch of channel 1
High frequency white

Medium frequency white

Low frequency white

White — frequency depends on pitch of channel 1.

9w —O

Figure I: Pitch values on channel 0

noise”. If pitch is equal to O you get high frequency periodic noise. Enter
SOUND 0,-15,0,40 and you’ll see (or, rather, hear) what I mean.

As you might guess, values of pitch of 1 and 2 give medium frequency and
low frequency periodic noise respectively. Try SOUND 0,-15,1,40 and
SOUND 0,-15,2,40 if you don’t believe me. To hear all three in order run
Program II.

1@ REM PROGRAM I1I

2@ FOR pitch=0 TO 2

3@ SOUND B,-15,pitch,2@
4@ NEXT pitch

This should help you hear the difference between the three. If you want you
can use a selection of periodic noises to produce something approaching a
“Close Encounters” noise. Program III does this by playing each of the
periodic noises in turn over and over, the duration of each note getting less
each time round the REPEAT . .. UNTIL loop.

18 REM FROGRAM III

20 time=20

3@ REFEAT

4@ FOR pitch=@ 70 2

So@ SOUND @,-15,pitch,time
6@ NEXT pitch

70 time=time-2

8@ UNTIL time=@

Notice that it is time and not TIME in the above program. TIME refers to
the internal clock of the micro and could cause some funny results if used! For
the moment let’s ignore what happens when you make the pitch equal to 3 and

122

go straight on to what happens when you make it 4, 5, or 6. If pitch has these
values, channel 0 produces “white” noise. If you want to know what that is
then enter SOUND 0,~15,4,100. This will give you five seconds of high
frequency white noise. It won’t come as a suprise to learn that SOUND
0,—15,5,100 will give you five seconds of medium frequency white noise and
SOUND 0,-15,6,100 five seconds of low frequency white noise.

Try Program IV which plays all three one after the other for a gradually
decreasing time. It’s very like Program III, so don’t type it all in again. Just use
the Copy key and change the lines you have to:

18 REM FPROGRAM 1V

20 time=20

3@ REFPEAT

4@ FOR pitch=4 TO &

S@ SOUND @8,-15S,pitch,time
6@ NEXT pitch

78 time=time-2

80 UNTIL time=0

Now what does all that white noise remind you of? A steam engine? Try
Program V. This uses the white noise pitch parameters in a REPEAT ...
UNTIL loop to make the sounds of an accelerating engine. The REPEAT ...
UNTIL FALSE loop takes over when the engine is at full speed.

1® REM FROGRAM V

15 REM STEAM ENGINE
20 time=20

3@ REFEAT

4@ FOR pitch=5 TO &
5@ SOUND @8,—-15S,pitch,time
6@ NEXT pitch

70 time=time—2

8@ UNTIL time=10

98 REFEAT

i@ SOUND @,-15,5,time
11@ SOUND @,-15,6,time
120 UNTIL FALSE

Still, enough of this nostalgia. What about the two values we’ve ignored?
What do they do? It’s quite simple really, if you think about it. We’ve been
using the bit of the SOUND command that wé normally use for selecting the

123

pitch (higher or lower) to pick the kind of noise we want, white or periodic.

So how do we change the pitch of the noise we are making? Can we make
the white noise and the periodic noise go up and down in pitch like normal
notes on the other sound channels? The answer is that we can, using values of
3 and 7 in the pitch parameter of a channel 0 SOUND command.

If you put these values in the pitch parameter then the pitch of the noise that
is played depends on the pitch of a note that is playing on sound channel 1. In
other words, by using 3 or 7 you can use a SOUND command on channel 1 to
alter the pitch, higher or lower, of periodic and white noise, respectively.
Program VI shows this being done with the pitch parameter in line 30 set at_
three. Run it and see what happens.

1@ REM PROGRAM VI

2@ FOR pitch=10@ TO 200
3@ SOUND @,-15,3,20

4@ SOUND 1,@,pitch,2@
S@ NEXT pitch

As you’ll hear, the pitch of the noise goes upwards. This is because the
FOR ... NEXT loop is raising the note produced by the channel 1 SOUND
command in line 40. The pitch of the note produced by line 30’s channel 0
SOUND command varies with the pitch of the note from channel 1.

If you look carefully at line 40 you’ll see that the amplitude has a value of 0
which means that you can’t hear what is being played on that channel. It still
varies the noise on channel 0, however. In fact it’s a good thing that you can’t
hear the channel 1 note. Run Program VII and you’ll see what I mean.

A mess, isn’t it? Now try Program VIII which, like Program VI, plays a
rising sequence of periodic noises.

Both of the duration parameters of the SOUND commands are the same.
What would happen if they were different? Try changing the duration

1@ REM PROGRAM VII

20 FOR pitch=1@@ TO 200
3@ SOUND @,-15,3,20

4@ SOUND 1,-15,pitch,2@
S@ NEXT pitch

1@ REM PROGRAM VIII

20 FOR pitch=5@ TO 106
3@ SOUND B8,-15,3,40

4@ SOUND 1,@,pitch,4@
S@ NEXT pitch

124

parameter in line 40 to 20 or 10 or 60 and see what happens. Can you explain
the odd effects? I'll give you a clue if you just stand in the queue!

If you make the pitch parameter 7 instead of 3 in the last three programs
you’ll see that channel 1 has the same effect. Only this time it’s a rising stream
of white noises that are produced.

Finally, let’s have some sound effects. Run Programs IX and X and you’ll
see what you can do with 3 and 7 as the pitch parameters. The first uses
periodic noises to produce a motorbike or moped sound:

1@ REM PROGRAM IX

2@ REM MOTOR CYCLE

3@ FOR pitch= 100 TO 120
4@ SOUND @,-15,3,5

5@ SOUND 1,@,pitch,5S

6@ NEXT pitch

7@ SOUND 1,@,pitch,B80

8@ SOUND @,-15,3,80

98 FOR pitch= 120 TO 18@ STEP -1
1@@ SOUND @,-15,3,5

11@ SOUND 1,@,pitch,5

12@ NEXT pitch

13@ SOUND 1,@,pitch,2@
14@ SOUND @,-15,3,20

The second uses white noise to imitate an unsuccessful rocket!

18 REM PROGRAM X

28 REM ROCEKET

3@ FOR pitch= 100 TO 208 STEP 4
4@ SOUND @,-15,7,5

S@ SOUND 1,8,pitch,S

6@ NEXT pitch

7@ SOUND 1,@0,pitch,B80

8@ SOUND @,-15,7,80

98 FOR pitch= 200 TO 12@ STEF -4
1@@ SOUND 8,-15,7,5
11® SOUND 1,8,pitch,S
128 NEXT pitch
138 SOUND B,-15,6,60

125

Chapter 18: Addressing the Envelope

SO far we've thoroughly explored the SOUND command, its intricacies and
vagaries. We have managed to produce some interesting sounds on the way
and, I hope, had a lot of fun in the process. However we haven’t explored all of
the BBC Micro’s sound capabilities. We've yet to use the ENVELOPE
command.

Now this is a formidable looking beast, being followed as it is by 14
numbers or parameters. The numbers and what they do are shown in Table I,
but don’t let them put you off. As long as you keep your nerve and take things
step by step you won’t come to any harm.

Why have an ENVELOPE in the first place, you might ask. After all, we've
been doing quite well with the nice, comparatively simple SOUND command.
Why complicate matters? The answer is that although we can do a lot with
SOUND, the ENVELOPE command allows us to do a whole lot more!

The note that we get from the BBC Micro with the SOUND command

Parameter Range Meaning

N 1to4 Envelope label

T 0 to 127 Length of each step in
100th of seconds.

(+ 128) Added to stop auto-repeat

PIi —128 to 127 How the pitch will change with
each step in the first part

P12 —128 to 127 Pitch change per step in the
second part

PI3 —128 to 127 Pitch change per step in the
third part

PN1 0 to 255 The duration of section one,
measured in steps of T

PN2 0 to 255 The duration of the second section
in steps of T centiseconds length

PN3 0 to 255 The duration of the third section
PN3 steps, each of T centiseconds

AA 126

AD 0 These values affect the

:i 1026 loudness of the note and

- " . .
ALA 126 are fixed for this article
ALD 126

Table I: Values and meaning of the ENVELOPE parameters

126

tends to be rather “‘electric” and not very exciting. Try SOUND
1,-15,100,200 Well, it’s a sound, but not a very interesting one. Now let’s
vary this sound using an ENVELOPE command to define an envelope. Type
in ENVELOPE 1,1,70,16,2,2,0,0,126,0,0,—126,126,126 then SOUND
1,1,100,200 and notice the difference.

The SOUND command is exactly the same as the previous one except that
the loudness parameter of —15 has become a 1. This figure 1 just tells the
micro to look for an envelope which has been typed in as envelope 1. I must
point out that the envelope must have been defined before the SOUND
command can use it. The micro then obeys the SOUND command, but the
note that it plays is influenced by the ENVELOPE command we defined
previously. In this case, the rather boring noise we produced earlier has now
become the sound of an alarm clock. I don’t want anyone dozing off while
they’re reading this chapter!

One thing to notice is that it is the SOUND command that makes the noise.
You can type in ENVELOPEs until you're blue in the face but they won’t
make a noise. All they do is alter the noises made by any SOUND command
that refers to them. The envelope defined by an ENVELOPE command varies
the sound produced by a SOUND command (provided the SOUND
command refers to the envelope by the number in its loudness parameter).

Now let’s have a look at the parameters that follow the ENVELOPE
command: ENVELOPE N,T,PI1,PI2,PI3,PN1,PN2,PN3,AA,AD,AS,AR,
ALA,ALD The beast still looks pretty formidable, but we’ll go through it step
by step. I have used the same parameter names as you’ll find in the User
Guide and some of the books, so you can cross reference.

You’'ll be pleased to know that we’re ignoring the last six parameters, the
ones that begin with A. These affect the loudness, or amplitude, of a note and
we’ll cover them in the next chapter. So we're left with the first eight
parameters. These label the envelope, decide how long its effects are going to
last and vary the pitch of the note.

Now why would you want to vary the pitch of a note? It seems odd that
you should specify the pitchin a SOUND command and then use an envelope
to vary it. The reason is that in real life notes are never the pure, steady sound
that we get from the BBC Micro’s sound channels. What we call the pitch of a
note is just an average. The actual note “wobbles’” around that value. It’s this
wobbling that lets us tell the difference between the middle C on a piano and
the middle C on a violin. The average pitch is the same, but the wobbles vary.
(I beg the forgiveness of any musical genius who may read the above.)

The ENVELOPE command allows us to approximate these wobbles and
so make the noises our micro produces sound like a saxophone or an alarm
clock. I should point out that the loudness also wobbles, but we’ll leave that
until later. Now let’s take a look at the first parameter following the
ENVELOPE command. As you’ll see from Table I, this is called N and can
have values of 1 to 4. N is a reference number. You decide what number you

127

want to refer to the envelope by and put that number in N. Then when you
want a sound to be influenced by that envelope you just put that number in the
loudness parameter of that SOUND command.

If you look at the alarm clock again you’ll see that we made the N in the
envelope equal to 1 and put a 1 in the loudness parameter of the following
sound statement. We could have used 2 as the label, or 3, or 4. From this
you'll see that you can have up to four envelopes ready for use.

The next parameter we come to is T which, as you might guess, stands for
time. As you’ll see in a moment, the ENVELOPE command works in a basic
unit called a step. It will affect a SOUND command in one way for a specified
number of steps, then in another way for another number of steps and so on.
What T does is to allow you to choose how long each of these steps will be. It
can have values from 0 to 127, and is measured in hundredths of a second. If
we have T equal to 100 then each step is a hundred centi-seconds long, which,
if my maths is correct, makes each step last a second.

Looking at the alarm clock envelope again, you’ll see that T is equal to 1, so
each step lasts for just one hundredth of a second. So N just labels the
envelope while T decides how long each of its steps will last. Now let’s explore
the next six parameters which cause the wobbles in the pitch of the note,
allowing it to make all manner of amazing sounds. There are three stages or
sections to the wobble, or change, in pitch. The pitch of the note can go up, go
down, or stay the same in each section.

Figure 1 shows the effect of a hypothetical envelope on a hypothetical
sound. The horizontal line is the pitch of the note as defined in the SOUND
command. The wavy line shows the notes actually played under the influence
of the ENVELOPE command. As you can see, there are three stages: the

Higher
pitch

SOUND

command

pitch Time y
7

W
Lower

pitch

Figure I: Effect of ENVELOPE on SOUND

128

pitch rises in the first stage, goes down in the second, and rises again in the
third. Of course it could have risen in all three stages, or gone down in all
three, but let’s just stick to it going up, down, and up again.

These ups and downs are caused by the parameters PI1, P12, and P13 in the
ENVELOPE command. PI1 is the increase or decrease of pitch for each step
in stage one. Similarly PI2 sets the increase or decrease per step for stage two
and PI3 that for stage three. The units of pitch are the same as we used in the
SOUND command. Eight of them make up a range of one tone, four of them
a semitone. The length of each stage is determined by PN1, PN2, and PN3.
The value of PN1 determines that the first stage will consist of PN1 steps,
each of length T. Similarly the second stage is of length PN2 steps, again of
length T.

As you might guess, the third stage is of length PN 3 steps, each step lasting
for T steps. Figure II shows all this. It’s just another version of Figure I with
the parameters put in. Let’s have a look at this in practice. Type in and run
Program 1.

Exciting, isn’t it? Can you understand the ENVELOPE command of line
20 and how it affects the noise made by the SOUND command of line 30?
Looking at line 20 we first of all have the ENVELOPE keyword, then comes
the number 1. This is the label that the envelope will be known by. Then comes
100, which means that each step of the envelope will take 100 centi-seconds or
one second. As we can see, PI1 has the value of 4. This means that for each

Higher
pitch

——
}Pll PN2 } PI2

PNI

Timey

}PIB
r—
PN3

é_Stage l__*___.S!ageZ _____ >{< _StageB_._al

'
Lower
pitch

Figure II: ENVELOPE parameters

129

1@ REM PROGRAM I
2@ ENVELOFE 1,100,4,0,8,10,0,0,126
,0,0,-126,126,126
3@ SOUND 1,1,50,200

step of one second the note produced by the SOUND command will rise in
pitch by one semitone.

Looking at the value for PN 1 we see that there will be 10 steps. Each will
last for one second and every second the note will rise by a semitone. Run it
again and see that this is the case. You'll notice that we’ve made the
parameters of the other two stages equal to zero to stop things getting too
complicated. The last six parameters effect the amplitude of the note. We’'ll
deal with this in the next chapter, and for the moment just stick to the six
values in line 20.

You might also notice that the envelope lasts for 10 seconds (PN 1 times T)
and the SOUND command lasts for 10 seconds. What happens if they don’t
coincide so neatly? Try Program II and see.

1@ REM PROGRAM II

2@ ENVELOPE 1,100,4,0,0,11,0,0,126
,0,0,-126,126,126

3@ SOUND 1,1,50,200

In this program you’ll see that PN 1 has become 11 so we should expect the
envelope to last for 11 seconds. However as the note is only being played by
the SOUND statement for 10 seconds, the last step never gets taken. The
reverse is the case in Program III.

1@ REM PROGRAM III

2@ ENVELOFE 1,100,4,0,0,5,0,0,126,
2,0,-126,126,126

3@ SOUND 1,1,50,200

As you can see, PN1 has now become 5. The SOUND statement is the
same, so the note will play for 10 seconds, but the envelope will only last for
five seconds (five steps, each of one second). What happens during the last
five seconds? As you can hear, the envelope auto-repeats. That is, when it
comes to the end of its steps, it pauses for a couple of steps (one for each of the
other two stages), then starts again and continues until the SOUND statement
runs out of puff after 10 seconds. This auto-repeat can be very useful for
producing sound effects, but it can also be a nuisance. Happily, it can be
switched off by adding 128 to whatever value of T you’ve put in the
ENVELOPE command.

In Program IV to switch off the auto-repeat I've added 128 to the value of

130

1@ REM FROGRAM IV

2@ ENVELOFE 1,228,4,0,0,6,0,0,124,
2,0,-126,126,126

I@ SOUND 1,1,50,200

T, previously 100. This makes for a T value of 228. Each step is still one
second long, the extra value justs ensures no auto-repeat. Have a go at
Program IV and see what I mean.

The auto-repeat has been switched off so the sound increases for six steps
then stays at that pitch for the remaining four seconds of the note. Right, let’s
see about doing something with the second stage of the pitch envelope. Let’s
give PI2 (pitch increment two) a value of —4 and PN2 a value of 5. Run
Program V and see what happens.

1@ REM PROGRAM V

2@ ENVELOPE 1,228,4,-4,0,5,5,0,126
,0,0,-126,126,126

%@ SOUND 1,1,50,200

As you might have guessed, the whole thing lasts for 10 seconds
(PN 1+PN2 steps, each of one second duration). The pitch of the note goes up
one semitone for each of five steps, then it goes down one semitone for five
steps. Program VI gives values to PI3 and PN3 and so we make use of the
third stage of the pitch part of the envelope.

1@ REM PROGRAM VI

2@ ENVELOPE 1,228,4,-4,4,3,3,3,126
,8,0,-126,126,126

@ SOUND 1,1,50,200

As you may have realised, the envelope lasts for nine seconds while the
sound lasts 10. This creates an uneven effect, the last note lasting two seconds.
Program VII shortens the note played by the SOUND statement to
compensate for this.

1@ REM FROGRAM VII

2@ ENVELOFE 1,228,4,-4,4,3,3,3,126
,0,0,-126,126,126

3@ SOUND 1,1,5@0,180

You can figure out how long the envelope lasts by adding up PN1, PN2,
and PN3 and multiplying the result by T. That is you add up the total number
of steps and multiply them by the time each step takes. And that’s really all
there is to the pitch part of the ENVELOPE command. It’s just a matter of

131

1@ REM PROGRAM VIII

2@ ENVELOPE 1,255,4,-4,0,3,3,0,126
.0,0,-126,126,126

3@ SOUND 1,1,50,255

deciding how many steps you want in each stage and what happens to the
note for each step. It’s quite simple really. Practice using envelopes and they’ll
soon stop seeming so difficult. One thing that you should be wary of though. is
shown by Program VIII.

You might think that as you start by going up three steps and then go down
three steps you'll start and end on the same note. However this isn’t the case —
the sound ends up one semitone below the beginning pitch. Figure III shows
what’s happened. The ENVELOPE takes effect straight away and the first
note played is a semitone above the pitch of the note in the SOUND
statement. It then goes up two more semitones and drops three. The final note
is, as you can hear, a semitone below the first. Program IX rectifies this by
having one step less in stage two than in stage one. The final note is now the
same pitch as the first.

1® REM PROGRAM IX

2@ ENVELOFE 1,255,4,-4,0,3,2,0,126
,0,0,-126,126,126

3@ SOUND 1,1,5@,255

And that’s the end of our first excursion into the ENVELOPE command.
It’s not all that hard when you get used to it, and you can do amazing things

Higher
pitch
p

Step 3

Step 2 Step 4

Step | Step 5

Step 6

<__.Stagc 1 __>|Q_.Slagc 2 __,)‘

v

Lower
pitch

Figure III: The ups and downs of ENVELOPE

132

with sound envelopes. Try Program X and listen to the four different sounds
produced. If you look at the listing you’ll see that the SOUND command is
the same in each case, only the envelope differs.

i@
28
zZa

,@,@,—

4@

,G,u,—

S@

REM PROGRAM X

count=@a

ENVELOFE 1,255,4,-4,4,3,3,3,126
126,126,126

ENVELOPE 2,127 ,4,-4,4,3,3,3,126
126,126,126

ENVELOFE 3,20,4,-4,4,3,3,3,1246,

2,0,-126,126,126

&8

ENVELOFE 4,1,4,-4,4,3,3,3,126,0

,0,-126,126,126

7@
8@
7@
100
pe
i1@
126
ope. "
138
14@
15@
160
i7@

REFPEAT .

envelope = 1 + count MOD4
PRINT:FRINT

FRINT "Envelope number "“i;envelo

FRINT:=FRINT
FRINT "Press key for next envel

SOUND 1,envelope,S@,255
count=count+1
WAITF=GET#

SOUND %11,0,0,0

UNTIL FALSE

133

Chapter 19: Envelopes licked

IN the last chapter we explored the ENVELOPE command and saw how we
could use it to vary the pitch of a note. We studiously ignored the last six of the
14 parameters that follow ENVELOPE. Now we’ll be dealing with these last
six and seeing how the values we give them can affect the amplitude, or
loudness, of a note.

The full set of ENVELOPE parameters is:

ENVELOPE N,T,PI1,PI2,PI3,PN1,PN2,PN3,
AA,AD,AS,AR,ALA,ALD

Let’s go straight on to Program I and see what happens if we put values in
two of these amplitude parameters. The note played by the SOUND

1@ REM FROGRAM I

2@ ENVELOPE 1,100,0,0,0,0,0,8,30,0
,0,0,120,0

3@ SOUND 1,1,5@,80

4@ SOUND 1,0,0,0

command in line 30 gets louder (in four steps) and then stops. This is a result
of the parameters we put in the last part of the envelope definition. Table I
gives a list of these parameters and their effects and ranges. I have stuck to the
standard parameter name abbreviations for the sake of uniformity.

You might ask why have these amplitude parameters anyway — surely they
just make things more complicated? The answer is that they do, but they also
allow the BBC Micro’s sound generator to mimic musical instruments. When
a note is played on a violin or piano it doesn’t have the same loudness all the
time. It builds up from silence to a maximum and then gets quieter again. Each
instrument has a different amplitude envelope, as this characteristic increase
and decrease in loudness is called. Some achieve their maximum loudness
rapidly, then fade away quickly. Others take relatively longer to reach their
full power and then die away gently.

Until now all we have used to control the loudness of a sound was the
amplitude parameter of the SOUND command. As you’ll remember, this is
the second one after the SOUND. The note started at the loudness specified
by that parameter and stayed there until it finished. It was simple, but it wasn’t

134

Parameter| Range Meaning

AA —127 Amplitude change per step in the
to 127 attack phase.

AD —127 Amplitude change per step in the
to 127 decay phase.

AS 0 Amplitude decrease during each step
to—127 | of sustain phase.

AR 0 Amplitude decrease during each step
to —127 | of release phase.

ALA 0 Target (maximum) value achieved
to 126 during attack phase.

ALD 0 Target (minimum) value achieved
to 126 during decay phase.

Table I: Amplitude parameters of ENVELOPE

like real life. The amplitude part of the ENVELOPE command was designed
to overcome this. It divides the time the note plays into four sections, each
with a different characteristic.

Figure I shows this schematically. The first section is the attack phase. In

J $ Steps

Amplitude
>
120q————
904
60— —/— — -
304
_ALA _ALD
Steps= A Steps= AD
1 2 34 56 7 8 910111213 14 15 16
Attack | Decay _L Sustain Release
Ll ve
Sound duration

-

Figure I: Amplitude parameters in action

135

this the note builds up from nothing to its maximum loudness. The parameters
ALA and AA control this phase. After the note has reached its peak, it enters
the decay phase, where it goes into a gradual decline. The parameters ALD
and AD govern this. The final two sections are the sustain phase and the
release phase, controlled by AS and AR respectively.

We'll ignore these last two for the time being and go back to Program I to
see what caused the changes in loudness we heard. Notice that it is only the
loudness which is changing. The pitch of the note stays exactly the same. If
you look at the envelope defined by line 20, you’ll see it has the label 1 and
each step lasts for one second. The six pitch parameters are all 0, so they don’t
have any effect on the note.

The only parameters that have a value assigned to them are ALA and AA,
the ones that govern the attack phase. The maximum loudness the note can
reach is fixed by ALA. This can have values between 0 and 126,
corresponding to the range of 0 to —15 allowed by the SOUND command. As
you can see, the amplitude envelope allows for much finer volume control.

In Program I, I've set the level at 120, mainly because it’s loud and divides
easily. The rate at which the loudness of the note increases to get to this
maximum level is fixed by the parameter AA. This can have values from
—127 to 127, is normally positive and is the change of amplitude per step. It
corresponds to the gradient of the attack phase shown in Figure I. For each
time step forward the volume of the note increases by AA.

In Program I the value is 30. For each time step forward the volume of the
note will increase by 30 until it reaches the level of 120. The number of steps it
takes to do this is 120 divided by 30, which give the answer four. We can
actually hear the four steps as the program runs. Since each step lasts for one
second the whole thing takes four seconds, which is the value I've made the
note sound for in line 30. Don’t worry about the SOUND command in line 40
it’s just a dummy note, there to catch garbage. You’'ll learn its significance
later.

Run Program II and you’ll hear it has eight steps. The sound gets louder,

1@ REM PROGRAM I1

2@ ENVELOPE 1,100,0,0,8,0,8,0,3@,-
:0,0,0,120,0

Z@ SOUND 1,1,50,160

4@ SOUND 1,0,0,0

then fades away because there are now values for the decay phase of the
amplitude envelope. The target value ALD is now 0 (no volume) and the drop
in amplitude per time step, AD, is now —30.

Figure II shows what has happened. Notice that the peak amplitude lasts
for two steps. This “doubling” effect occurs where two phases join and can

136

Amplitude
A

. 1
120+ :
|
|
I
|
90 - |
|
|
|
|
60 4 I
|
|
|
30 :
A k
¢ ——Awack ,:4____'3.“_“__.__

|

l -

1 2 3 4 5 6 7 8 Time in steps

4—— Duration of SOUND command ——%
Figure I1: Program II'’s amplitude envelope

lead to some unexpected results if you don’t keep it in mind. Still that’s for
later when you experiment with envelopes for yourself. Remember though, if
you think that something has lasted a step more than it ought it’s probably
because of the “join” of two phases.

You’ll notice that I have increased the duration of the SOUND command
in line 30 to eight seconds, exactly the length of the envelope. You might
wonder what would happen if the duration of the SOUND command was
shorter or longer than that dictated by the parameters of the ENVELOPE
command governing the sound.

Program III shows what happens if it’s shorter. Here the duration of the

1@ REM PROGRAM III

2@ ENVELOFE 1,100,0,0,0,2,2,0,30,—
0,2,0,120,0

3@ SOUND 1,1,50,80

4@ SOUND 1,0,0,0

sound is only four seconds, while looking at the parameters of the envelope
would lead us to expect it to last eight seconds as before. What happens is that
the sound lasts for four seconds, so only the first four seconds of the envelope
get a chance to work. The rest, in this case the decay phase, is ignored.
Program IV shows us what happens if the duration of the sound exceeds
that of the parameter. As you might expect, the note carries on at the final

137

1@ REM FROGRAM IV

2@ ENVELOPE 1,100,9,2,8,0,0,0,30,—
30,0,0,120,0

3@ SOUND 1,1,50,200

4@ SOUND 1,0,0,D

volume it reached, finishing off the duration parameter of the SOUND
command. The trouble is that since the final loudness of the sound is 0 we
can’t hear it! Still, it is there, playing away silently until the ten seconds are up.
If you don’t believe me, make the SOUND command in line 40 produce a real
sound on the same channel. You won’t hear it until the ten seconds are up.

Now the value of ALD doesn’t always have to be 0. We can have any value
between 0 and 126. In Program V, ALA has the value of 60. This is the target
volume for the decay phase and it is reached in steps of —30 (AD). With
Program V the duration of the SOUND is such that it finishes at the same

1@ REM PROGRAM V

2@ ENVELOFE 1,100,2,0,0,0,08,2,30,-
30,0,0,120,60

3@ SOUND 1,1,50,120

4@ SOUND 1,0,0,0

time as the amplitude reaches 60, after six seconds. The trouble is that this
means you can’t hear the note at its final volume as you cut off the sound just
as it reaches it.

Program VI is exactly the same, except that it lasts for nine seconds. Now

1@ REM PROGRAM VI

2@ ENVELOFE 1,100,0,0,0,0,0,0,30,—
30,0,0,120,60

3@ SOUND 1,1,5@,18@

4@ SOUND 1,2,0,0

you can hear the final decrease in volume. Notice again that the sound
continues at the final loudness reached until all of the duration parameter of
the SOUND command is used up.

But what of the sustain phase, governed by the parameter AS? What does
this do? 1t’s quite simple really. All that it does is use up the rest of the
duration of the SOUND command. The attack and decay phase both use up
part and the sustain phase lasts for whatever period, if any, is left.

Now that we know how long the sustain phase lasts, let’s see what it does

138

by running Program VII, which gives AS the value of —15. As you can hear,
the volume increases to 120 and decreases down to 60 as you might expect

1@ REM PROGRAM VII

2@ ENVELOFE 1,100,0,0,0,2,8,2,30,—
0,-15,8,120,60

Z@ SOUND 1,1,58,200

4@ SOUND 1,2,0,0

from the parameters. This uses up six seconds of the 10 that the note will play
for. During the remaining four seconds of the note the amplitude envelope
enters the sustain phase. Here the AS parameter is —15. This, as you might
guess, means that the volume decreases by a factor of 15 for each time step. In
this program the volume in the sustain phase goes down from 60 by 15 each
second. It gets to O volume just as the time runs out.

Program VIII is the same as Program VII except that the duration of the

1@ REM PROGRAM VIII

2@ ENVELOFE 1,100,0,0,0,8,8,0,30,—
30,-15,0,120,460

3@ SOUND 1,1,50,240

4@ SOUND 1,0,0,0

note caused by the SOUND statement is now 12 seconds. The volume still
reaches 0 after ten seconds but the note keeps playing, silently, for the last two
seconds. Again, if you don’t believe me put a real note on channel 1 in line 40
and it won’t sound until the note in line 30 has had its full 12 seconds. Of
course you don’t have to arrange it so that AS eventually reduces to O volume.
In Program IX it has the value —5 so the volume doesn’t have a chance to
reach O before the time runs out.

1@ REM PROGRAM IX

20 ENVELOFE 1,100,0,0,0,0,0,0,30,—
30,-5,0,120,60

3@ SOUND 1,1,50,240

4@ SOUND 1,0,2,0

Looking at Program X two things are apparent. Line 40, the garbage
collecting line, has gone and the value of AS is now —10. A quick calculation
will show that the attack and decay phases will take six seconds. A decline of
—10 for each of the six remaining one second steps of the sustain phase should
take the volume to O just as the note finishes playing. Try it and see! The note

139

1@ REM PROGRAM X

2@ ENVELOFPE 1,100,0,0,2,2,0,08,30,—
30,-10,0,120,60

3@ SOUND 1,1,50,240

carries on beyond the 12 seconds you’d expect from the SOUND command.

What’s happened is that the sound generator has come to the end of the
sustain phase and entered the release phase. This is a rather weird
construction which is independent of the duration parameter of the SOUND
command. The envelope reaches the end of the sustain phase when the
duration of the note runs out. The sound generator then searches around for
something to do next. If a note is waiting on the same channel it will play it. If
not it will carry on playing the last note until the next note comes along.

Never mind that the duration set by the SOUND command has been used
up. The release phase carries on regardless. During this release phase the
volume of the note can be made to fade away by giving AR a negative value. It
will carry on decreasing by this amount per time period until it eventually
reaches O or another note is placed on that channel. The eventual target
volume is 0, the decrease per step is AR and the whole phase is independent of
the duration parameter of the note.

12 REM PROGRAM XI

2@ ENVELOFE 1,100,0,0,8,0,2,0,30,-
30,0,0,120,460

@ SOUND 1,1,50,240

As you can see from Program XI, if AS and AD are both 0 and there is no
other note on that channel queue, the note carries on and on. This is because
there’s no decline to 0 volume in the release phase. Hence the dummy note I've
put in line 40 of the previous programs — without it the note is endless and
would confuse all the examples.

As I said, it’s a strange part of the amplitude envelope. It’s mainly meant to
mimic the dying away of a note on a musical instrument. You’ll notice that if
there’s a note following it on the same channel the envelope never enters the
release phase. It just gets on with the next note. There are times when we
might want to give a note a release phase, despite other notes behind it in the
same queue.

We can force the note to enter its release phase, despite any following notes,
by putting a dummy note after it such as:

SOUND %10021,0,0,0

This makes the T parameter of the SOUND command equal to one, which

140

forces the previous note to enter the release phase. See the second chapter on
sound if you don’t know where the T parameter goes or why we’ve got a & in
the SOUND command.

I find the sustain and release phases a nuisance most of the time, so I just
use the values of —127 for each. This effectively switches them off because as
soon as the note enters either phase the volume is decreased to 0, whatever it
was before. Program XII shows this in action.

18 REM FROGRAM XII

2@ ENVELOFE 1,100,0,0,0,0,8,8,30,—
30,-127,-127,120,60

I@ SOUND 1,1,5@,24@

And that’s the end. I've covered the SOUND and ENVELOPE commands
and their parameters. The rest is up to you.

141

142

143

144

r——w————-—w'r—!"-’*wrﬁ) G PSSR P RPN 7 o W o

~ YOU may be able to program, but are you *
- getting the most from your BBC Micro?
Does it sit silently in the corner, displaying
\ forlorn messages in black and white? If so,
10 then you're wasting the BBC Micro's huge

potential.
. Getting Started in Sound and Graphicsis
- the answer.
N In the same stralghthrward style as their

highly praised series in The Micro User,

Michael Noels, Paul Jones and Nigel Peters

fully explore the computer’s astonishing

sound and graphics capabilities. :
Assuming only a rudlmentary knowledge

of Basic the authors thoroughly explain all -

. the programming methods involved, rang-

& ing from the simple to the most complex.

Hp s ik From triangles to teletext, straight lines
to multiplane images, squeaks to sonatas —
. ~you'll find all the techniques you need in
43 this easy to understand book.

